From: guido Date: Thu, 12 Feb 2004 10:15:15 +0000 (+0000) Subject: access blocks in Accessor and documentation for doxygen X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0bab3fa499733a01fed6dfecac97dbed0bbc785b;p=dealii-svn.git access blocks in Accessor and documentation for doxygen git-svn-id: https://svn.dealii.org/trunk@8460 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/lac/include/lac/block_sparse_matrix.h b/deal.II/lac/include/lac/block_sparse_matrix.h index 23722fe858..dadf85544c 100644 --- a/deal.II/lac/include/lac/block_sparse_matrix.h +++ b/deal.II/lac/include/lac/block_sparse_matrix.h @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 2000, 2001, 2002, 2003 by the deal.II authors +// Copyright (C) 2000, 2001, 2002, 2003, 2004 by the deal.II authors // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -31,34 +31,24 @@ template class BlockVector; /** * Blocked sparse matrix. The behaviour of objects of this type is - * almost as for the @p{SparseMatrix<...>} objects, with most of the + * almost as for the SparseMatrix objects, with most of the * functions being implemented in both classes. The main difference is * that the matrix represented by this object is composed of an array - * of sparse matrices (i.e. of type @p{SparseMatrix}) and all + * of sparse matrices (i.e. of type SparseMatrix) and all * accesses to the elements of this object are relayed to accesses of * the base matrices. * * In addition to the usual matrix access and linear algebra - * functions, there are functions @p{block} which allow access to the + * functions, there are functions block() which allow access to the * different blocks of the matrix. This may, for example, be of help * when you want to implement Schur complement methods, or block * preconditioners, where each block belongs to a specific component * of the equation you are presently discretizing. * - * Note that the number of blocks and rows are implicitly determined + * Note that the numbers of blocks and rows are implicitly determined * by the sparsity pattern objects used. * - * - * @sect2{On template instantiations} - * - * Member functions of this class are either implemented in this file - * or in a file of the same name with suffix ``.templates.h''. For the - * most common combinations of the template parameters, instantiations - * of this class are provided in a file with suffix ``.cc'' in the - * ``source'' directory. If you need an instantiation that is not - * listed there, you have to include this file along with the - * corresponding ``.templates.h'' file and instantiate the respective - * class yourself. + * @ref Instantiations: some (@ @) * * @author Wolfgang Bangerth, 2000 */ @@ -114,6 +104,20 @@ class BlockSparseMatrix : public Subscriptor * Value of this matrix entry. */ number value() const; + + /** + * Block row of the + * element represented by + * this object. + */ + unsigned int block_row() const; + + /** + * Block column of the + * element represented by + * this object. + */ + unsigned int block_column() const; protected: /** @@ -129,7 +133,7 @@ class BlockSparseMatrix : public Subscriptor /** * Number of block where row lies in. */ - unsigned int block_row; + unsigned int row_block; /** * First row of block. @@ -139,7 +143,7 @@ class BlockSparseMatrix : public Subscriptor /** * Number of block column where column lies in. */ - unsigned int block_col; + unsigned int col_block; /** * First column of block. @@ -195,7 +199,7 @@ class BlockSparseMatrix : public Subscriptor */ bool operator == (const const_iterator&) const; /** - * Inverse of @p{==}. + * Inverse of operator==(). */ bool operator != (const const_iterator&) const; @@ -227,7 +231,7 @@ class BlockSparseMatrix : public Subscriptor * * You have to initialize the * matrix before usage with - * @p{reinit(BlockSparsityPattern)}. The + * reinit(BlockSparsityPattern). The * number of blocks per row and * column are then determined by * that function. @@ -240,7 +244,7 @@ class BlockSparseMatrix : public Subscriptor * represent the sparsity pattern * of this matrix. You can change * the sparsity pattern later on - * by calling the @p{reinit} + * by calling the reinit() * function. * * This constructor initializes @@ -252,7 +256,7 @@ class BlockSparseMatrix : public Subscriptor * lifetime of the sparsity * structure is at least as long * as that of this matrix or as - * long as @p{reinit} is not called + * long as reinit() is not called * with a new sparsity structure. */ BlockSparseMatrix (const BlockSparsityPattern &sparsity); @@ -277,11 +281,11 @@ class BlockSparseMatrix : public Subscriptor * Reinitialize the object but * keep to the sparsity pattern * previously used. This may be - * necessary if you @p{reinit}'d + * necessary if you reinitialized * the sparsity structure and * want to update the size of the * matrix. It only calls - * @p{reinit} on the + * SparseMatrix::reinit() on the * sub-matrices. The size of this * matrix is unchanged. * @@ -302,7 +306,7 @@ class BlockSparseMatrix : public Subscriptor * reserved. * * Basically, this function only - * calls @p{reinit} of the + * calls SparseMatrix::reinit() of the * sub-matrices with the block * sparsity patterns of the * parameter. @@ -339,7 +343,7 @@ class BlockSparseMatrix : public Subscriptor * the sparsity pattern it was * previously tied to. * - * This calls @p{clear} on all + * This calls SparseMatrix::clear on all * sub-matrices. */ virtual void clear (); @@ -364,7 +368,7 @@ class BlockSparseMatrix : public Subscriptor * Return whether the object is * empty. It is empty if either * both dimensions are zero or no - * @p{SparsityPattern} is + * BlockSparsityPattern is * associated. */ bool empty () const; @@ -405,9 +409,9 @@ class BlockSparseMatrix : public Subscriptor unsigned int n_actually_nonzero_elements () const; /** - * Set the element @p{(i,j)} to - * @p{value}. Throws an error if - * the entry does not + * Set the element (i,j) + * to value. Throws an + * error if the entry does not * exist. Still, it is allowed to * store zero values in * non-existent fields. @@ -429,8 +433,8 @@ class BlockSparseMatrix : public Subscriptor BlockSparseMatrix & operator /= (const number factor); /** - * Add @p{value} to the element - * @p{(i,j)}. Throws an error if + * Add value to the element + * (i,j). Throws an error if * the entry does not * exist. Still, it is allowed to * store zero values in @@ -450,7 +454,7 @@ class BlockSparseMatrix : public Subscriptor * cheaper. Since this operation * is notheless not for free, we * do not make it available - * through @p{operator =}, since + * through operator=(), since * this may lead to unwanted * usage, e.g. in copy arguments * to functions, which should @@ -464,15 +468,15 @@ class BlockSparseMatrix : public Subscriptor * of this matrix. * * The function returns a - * reference to @p{this}. + * reference to this. */ template BlockSparseMatrix & copy_from (const BlockSparseMatrix &source); /** - * Add @p{matrix} scaled by - * @p{factor} to this matrix. The + * Add matrix scaled by + * factor to this matrix. The * function throws an error if * the sparsity patterns of the * two involved matrices do not @@ -506,9 +510,9 @@ class BlockSparseMatrix : public Subscriptor /** * This function is mostly like - * @p{operator()} in that it + * operator()() in that it * returns the value of the - * matrix entry @p{(i,j)}. The only + * matrix entry (i,j). The only * difference is that if this * entry does not exist in the * sparsity pattern, then instead @@ -571,7 +575,7 @@ class BlockSparseMatrix : public Subscriptor * let $dst = M^T*src$ with $M$ * being this matrix. This * function does the same as - * @p{vmult} but takes the + * vmult() but takes the * transposed matrix. */ template @@ -623,11 +627,13 @@ class BlockSparseMatrix : public Subscriptor /** * Adding Matrix-vector - * multiplication. Add $M^T*src$ - * to $dst$ with $M$ being this - * matrix. This function does the - * same as @p{vmult_add} but takes - * the transposed matrix. + * multiplication. Add + * MTsrc to + * dst with M being + * this matrix. This function + * does the same as vmult_add() + * but takes the transposed + * matrix. */ template void Tvmult_add (BlockVector &dst, @@ -635,19 +641,20 @@ class BlockSparseMatrix : public Subscriptor /** * Return the norm of the vector - * $v$ with respect to the norm - * induced by this matrix, - * i.e. $\left(v,Mv\right)$. This + * v with respect to the + * norm induced by this matrix, + * i.e. vTMv). This * is useful, e.g. in the finite * element context, where the - * $L_2$ norm of a function - * equals the matrix norm with - * respect to the mass matrix of - * the vector representing the - * nodal values of the finite - * element function. Note that - * even though the function's - * name might suggest something + * LT-norm of a + * function equals the matrix + * norm with respect to the mass + * matrix of the vector + * representing the nodal values + * of the finite element + * function. Note that even + * though the function's name + * might suggest something * different, for historic * reasons not the norm but its * square is returned, as defined @@ -670,14 +677,9 @@ class BlockSparseMatrix : public Subscriptor const BlockVector &v) const; /** - * Compute the residual of an - * equation @p{Ax=b}, where the - * residual is defined to be - * @p{r=b-Ax} with @p{x} typically - * being an approximate of the - * true solution of the - * equation. Write the residual - * into @p{dst}. + * Compute the residual + * r=b-Ax. Write the + * residual into dst. */ template somenumber residual (BlockVector &dst, @@ -688,11 +690,12 @@ class BlockSparseMatrix : public Subscriptor * Apply the Jacobi * preconditioner, which * multiplies every element of - * the @p{src} vector by the + * the src vector by the * inverse of the respective * diagonal element and * multiplies the result with the - * relaxation parameter @p{omega}. + * relaxation parameter + * omega. * * All diagonal blocks must be * square matrices for this @@ -707,11 +710,12 @@ class BlockSparseMatrix : public Subscriptor * Apply the Jacobi * preconditioner, which * multiplies every element of - * the @p{src} vector by the + * the src vector by the * inverse of the respective * diagonal element and * multiplies the result with the - * relaxation parameter @p{omega}. + * relaxation parameter + * omega. * * All diagonal blocks must be * square matrices for this @@ -730,8 +734,46 @@ class BlockSparseMatrix : public Subscriptor const Vector &src, const number omega = 1.) const; - /* Call print functions for - * the SparseMatrix blocks. + /** + * Print the matrix in the usual + * format, i.e. as a matrix and + * not as a list of nonzero + * elements. For better + * readability, elements not in + * the matrix are displayed as + * empty space, while matrix + * elements which are explicitly + * set to zero are displayed as + * such. + * + * The parameters allow for a + * flexible setting of the output + * format: precision and + * scientific are used + * to determine the number + * format, where scientific = + * false means fixed point + * notation. A zero entry for + * width makes the + * function compute a width, but + * it may be changed to a + * positive value, if output is + * crude. + * + * Additionally, a character for + * an empty value may be + * specified. + * + * Finally, the whole matrix can + * be multiplied with a common + * denominator to produce more + * readable output, even + * integers. + * + * @attention This function may + * produce large amounts + * of output if applied to a + * large matrix! */ void print_formatted (std::ostream &out, const unsigned int precision = 3, @@ -746,11 +788,11 @@ class BlockSparseMatrix : public Subscriptor * pattern of this matrix. * * Though the return value is - * declared @p{const}, you should - * be aware that it may change if - * you call any nonconstant - * function of objects which - * operate on it. + * declared const, you + * should be aware that it may + * change if you call any + * nonconstant function of + * objects which operate on it. */ const BlockSparsityPattern & get_sparsity_pattern () const; @@ -768,12 +810,12 @@ class BlockSparseMatrix : public Subscriptor /** * STL-like iterator with the - * first entry of row @p{r}. + * first entry of row r. */ const_iterator begin (unsigned int r) const; /** - * Final iterator of row @p{r}. + * Final iterator of row r. */ const_iterator end (unsigned int r) const; @@ -802,7 +844,7 @@ class BlockSparseMatrix : public Subscriptor * zero, and is only changed if a * sparsity pattern is given to * the constructor or the - * @p{reinit} function. + * reinit() function. */ unsigned int rows; @@ -812,7 +854,7 @@ class BlockSparseMatrix : public Subscriptor * zero, and is only changed if a * sparsity pattern is given to * the constructor or the - * @p{reinit} function. + * reinit() function. */ unsigned int columns; @@ -850,9 +892,9 @@ Accessor (const BlockSparseMatrix *matrix, : matrix(matrix), base_iterator(matrix->block(0,0).begin()), - block_row(0), + row_block(0), row_start(0), - block_col(0), + col_block(0), col_start(0), a_index(0) { @@ -862,14 +904,14 @@ Accessor (const BlockSparseMatrix *matrix, { std::pair indices = matrix->sparsity_pattern->get_row_indices().global_to_local(r); - block_row = indices.first; + row_block = indices.first; base_iterator = matrix->block(indices.first, 0).begin(indices.second); row_start = matrix->sparsity_pattern - ->get_row_indices().local_to_global(block_row, 0); + ->get_row_indices().local_to_global(row_block, 0); } else { - block_row = matrix->n_block_rows(); + row_block = matrix->n_block_rows(); base_iterator = matrix->block(0, 0).begin(); } } @@ -902,6 +944,24 @@ BlockSparseMatrix::Accessor::column() const } +template +inline +unsigned int +BlockSparseMatrix::Accessor::block_row() const +{ + return row_block; +} + + +template +inline +unsigned int +BlockSparseMatrix::Accessor::block_column() const +{ + return col_block; +} + + template inline number @@ -931,7 +991,7 @@ inline typename BlockSparseMatrix::const_iterator& BlockSparseMatrix::const_iterator::operator++ () { - Assert (this->block_rowmatrix->n_block_rows(), ExcIteratorPastEnd()); + Assert (this->row_blockmatrix->n_block_rows(), ExcIteratorPastEnd()); // Remeber current row inside block unsigned int local_row = this->base_iterator->row(); @@ -940,41 +1000,41 @@ BlockSparseMatrix::const_iterator::operator++ () ++this->a_index; // If end of row inside block, // advance to next block - if (this->base_iterator == this->matrix->block(this->block_row, this->block_col).end(local_row)) + if (this->base_iterator == this->matrix->block(this->row_block, this->col_block).end(local_row)) { - if (this->block_colmatrix->n_block_cols()-1) + if (this->col_blockmatrix->n_block_cols()-1) { // Advance to next block in // row - ++this->block_col; + ++this->col_block; this->col_start = this->matrix->sparsity_pattern - ->get_column_indices().local_to_global(this->block_col, 0); + ->get_column_indices().local_to_global(this->col_block, 0); } else { // Advance to first block // in next row - this->block_col = 0; + this->col_block = 0; this->col_start = 0; this->a_index = 0; ++local_row; - if (local_row>=this->matrix->block(this->block_row,0).m()) + if (local_row>=this->matrix->block(this->row_block,0).m()) { // If final row in // block, go to next // block row local_row = 0; - ++this->block_row; - if (this->block_row < this->matrix->n_block_rows()) + ++this->row_block; + if (this->row_block < this->matrix->n_block_rows()) this->row_start = this->matrix->sparsity_pattern - ->get_row_indices().local_to_global(this->block_row, 0); + ->get_row_indices().local_to_global(this->row_block, 0); } } // Finally, set base_iterator // to start of row determined // above - if (this->block_row < this->matrix->n_block_rows()) - this->base_iterator = this->matrix->block(this->block_row, this->block_col).begin(local_row); + if (this->row_block < this->matrix->n_block_rows()) + this->base_iterator = this->matrix->block(this->row_block, this->col_block).begin(local_row); else // Set base_iterator to a // defined state for @@ -1026,8 +1086,8 @@ operator == (const const_iterator& i) const if (this->matrix != i->matrix) return false; - if (this->block_row == i->block_row - && this->block_col == i->block_col + if (this->row_block == i->row_block + && this->col_block == i->col_block && this->base_iterator == i->base_iterator) return true; return false; @@ -1052,9 +1112,9 @@ bool BlockSparseMatrix::const_iterator:: operator < (const const_iterator& i) const { - if (this->block_rowblock_row) + if (this->row_blockrow_block) return true; - if (this->block_row == i->block_row) + if (this->row_block == i->row_block) { if (this->base_iterator->row() < i->base_iterator->row()) return true; @@ -1525,9 +1585,9 @@ residual (BlockVector &dst, Assert (x.n_blocks() == columns, ExcDimensionMismatch(x.n_blocks(), columns)); // in block notation, the residual is - // @p{r_i = b_i - \sum_j A_ij x_j}. + // r_i = b_i - \sum_j A_ij x_j. // this can be written as - // @p{r_i = b_i - A_i0 x_0 - \sum_{j>0} A_ij x_j}. + // r_i = b_i - A_i0 x_0 - \sum_{j>0} A_ij x_j. // // for the first two terms, we can // call the residual function of