From: kronbichler Date: Mon, 20 Oct 2008 17:00:11 +0000 (+0000) Subject: Wrote some comments. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0ca391533e2bbf53ff53776aacb9e8447565d1b9;p=dealii-svn.git Wrote some comments. git-svn-id: https://svn.dealii.org/trunk@17280 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index 6ef4629c47..c980719da5 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -244,14 +244,15 @@ namespace LinearSolvers // calculate the action of an // "inverted" matrix on a vector // (using the vmult - // operation) - // in the same way as the corresponding - // function in step-22: when the - // product of an object of this class - // is requested, we solve a linear + // operation) in the same way as + // the corresponding function in + // step-22: when the product of an + // object of this class is + // requested, we solve a linear // equation system with that matrix // using the CG method, accelerated - // by a preconditioner of (templated) class + // by a preconditioner of + // (templated) class // Preconditioner. template class InverseMatrix : public Subscriptor @@ -307,97 +308,95 @@ namespace LinearSolvers // This is the implementation of // the Schur complement // preconditioner as described in - // the section on improved solvers - // in step-22. - // - // The basic concept of the - // preconditioner is different to - // the solution strategy used in - // step-20 and step-22. There, the - // Schur complement was used for a - // two-stage solution of the linear - // system. Recall that the process - // in the Schur complement solver - // is a Gaussian elimination of a - // 2x2 block matrix, where each - // block is solved iteratively. - // Here, the idea is to let an - // iterative solver act on the - // whole system, and to use a Schur - // complement for - // preconditioning. As usual when - // dealing with preconditioners, we - // don't intend to exacly set up a - // Schur complement, but rather use - // a good approximation to the - // Schur complement for the purpose - // of preconditioning. - // - // So the question is how we can - // obtain a good preconditioner. - // Let's have a look at the + // detail in the introduction. As + // opposed to step-20 and step-22, + // we solve the block system + // all-at-once using GMRES, and use + // the Schur complement of the + // block structured matrix to build + // a good preconditioner instead. + // + // Let's have a look at the ideal // preconditioner matrix P - // acting on the block system, built - // as - // @f{eqnarray*} - // P^{-1} - // = - // \left(\begin{array}{cc} - // A^{-1} & 0 \\ S^{-1} B A^{-1} & -S^{-1} - // \end{array}\right) - // @f} - // using the Schur complement - // $S = B A^{-1} B^T$. If we apply - // this matrix in the solution of - // a linear system, convergence of - // an iterative Krylov-based solver - // will be governed by the matrix + // described in the introduction. If + // we apply this matrix in the + // solution of a linear system, + // convergence of an iterative + // GMRES solver will be + // governed by the matrix // @f{eqnarray*} - // P^{-1}\left(\begin{array}{cc} - // A & B^T \\ B & 0 - // \end{array}\right) - // = - // \left(\begin{array}{cc} - // I & A^{-1} B^T \\ 0 & 0 - // \end{array}\right), - // @f} - // which turns out to be very simple. - // A GMRES solver based on exact + // P^{-1}\left(\begin{array}{cc} A + // & B^T \\ B & 0 + // \end{array}\right) = + // \left(\begin{array}{cc} I & + // A^{-1} B^T \\ 0 & 0 + // \end{array}\right), @f} + // + // which indeed is very simple. A + // GMRES solver based on exact // matrices would converge in two - // iterations, since there are - // only two distinct eigenvalues. - // Such a preconditioner for the - // blocked Stokes system has been - // proposed by Silvester and Wathen - // ("Fast iterative solution of - // stabilised Stokes systems part II. - // Using general block preconditioners", + // iterations, since there are only + // two distinct eigenvalues. Such + // a preconditioner for the blocked + // Stokes system has been proposed + // by Silvester and Wathen ("Fast + // iterative solution of stabilised + // Stokes systems part II. Using + // general block preconditioners", // SIAM J. Numer. Anal., 31 (1994), // pp. 1352-1367). // - // The deal.II users who have already - // gone through the step-20 and step-22 - // tutorials can certainly imagine - // how we're going to implement this. - // We replace the inverse matrices - // in $P^{-1}$ using the InverseMatrix - // class, and the inverse Schur + // Replacing P by + // $\tilde{P}$ does not change the + // situation dramatically. The + // product $P^{-1} A$ will still be + // close to a matrix with + // eigenvalues 0 and 1, which lets + // us hope to be able to get a + // number of GMRES iterations that + // does not depend on the problem + // size. + // + // The deal.II users who have + // already gone through the step-20 + // and step-22 tutorials can + // certainly imagine how we're + // going to implement this. We + // replace the inverse matrices in + // $P^{-1}$ using the InverseMatrix + // class, and the inverse Schur // complement will be approximated - // by the pressure mass matrix $M_p$. - // Having this in mind, we define a - // preconditioner class with a - // vmult functionality, - // which is all we need for the - // interaction with the usual solver - // functions further below in the - // program code. + // by the pressure mass matrix + // $M_p$. As pointed out in the + // results section of step-22, we + // can replace the exact inverse of + // A by just the application + // of a preconditioner. This does + // increase the number of GMRES + // iterations, but is still + // significantly cheaper than an + // exact inverse, which would + // require between 20 and 35 CG + // iterations for each + // outer solver step (using the AMG + // preconditioner). // - // First the declarations. These are - // similar to the definition of the Schur - // complement in step-20, with the - // difference that we need some more - // preconditioners in the constructor and - // that the matrices we use here are built + // Having the above explanations in + // mind, we define a preconditioner + // class with a vmult + // functionality, which is all we + // need for the interaction with + // the usual solver functions + // further below in the program + // code. + // + // First the declarations. These + // are similar to the definition of + // the Schur complement in step-20, + // with the difference that we need + // some more preconditioners in the + // constructor and that the + // matrices we use here are built // upon Trilinos: template class BlockSchurPreconditioner : public Subscriptor @@ -405,7 +404,8 @@ namespace LinearSolvers public: BlockSchurPreconditioner ( const TrilinosWrappers::BlockSparseMatrix &S, - const InverseMatrix &Mpinv, + const InverseMatrix &Mpinv, const PreconditionerA &Apreconditioner); void vmult (TrilinosWrappers::BlockVector &dst, @@ -426,7 +426,8 @@ namespace LinearSolvers template BlockSchurPreconditioner:: BlockSchurPreconditioner(const TrilinosWrappers::BlockSparseMatrix &S, - const InverseMatrix &Mpinv, + const InverseMatrix &Mpinv, const PreconditionerA &Apreconditioner) : stokes_matrix (&S), @@ -437,21 +438,24 @@ namespace LinearSolvers // Next is the vmult - // function. We implement the action of - // $P^{-1}$ as described above in three - // successive steps. The first step - // multiplies the velocity part of the - // vector by a preconditioner of the matrix - // A. The resuling velocity vector - // is then multiplied by $B$ and subtracted - // from the pressure. This second step - // only acts on the pressure vector and is - // accomplished by the command - // SparseMatrix::residual. Next, we change - // the sign in the temporary pressure - // vector and finally multiply by the - // pressure mass matrix to get the final - // pressure vector, completing our work on + // function. We implement the + // action of $P^{-1}$ as described + // above in three successive steps. + // The first step multiplies the + // velocity part of the vector by a + // preconditioner of the matrix + // A. The resuling velocity + // vector is then multiplied by $B$ + // and subtracted from the + // pressure. This second step only + // acts on the pressure vector and + // is accomplished by the command + // SparseMatrix::residual. Next, we + // change the sign in the temporary + // pressure vector and finally + // multiply by the pressure mass + // matrix to get the final pressure + // vector, completing our work on // the Stokes preconditioner: template void BlockSchurPreconditioner::vmult ( @@ -622,12 +626,14 @@ BoussinesqFlowProblem::BoussinesqFlowProblem () // @sect4{BoussinesqFlowProblem::get_maximal_velocity} - // Starting the real functionality of this - // class is a helper function that determines - // the maximum velocity in the domain (at the - // quadrature points, in fact). It should be - // relatively obvious to all who have gotten - // to this point: + // Starting the real functionality of + // this class is a helper function + // that determines the maximum + // ($L_\infty$) velocity in the + // domain (at the quadrature points, + // in fact). It should be relatively + // obvious to all who have gotten to + // this point: template double BoussinesqFlowProblem::get_maximal_velocity () const { @@ -993,32 +999,37 @@ void BoussinesqFlowProblem::setup_dofs () // used in three spatial dimensions as we // intend to do for this program. // - // So, we first release the memory stored - // in the matrices, then set up an object - // of type + // So, we first release the memory + // stored in the matrices, then set + // up an object of type // BlockCompressedSetSparsityPattern - // consisting of $2\times 2$ blocks (for - // the Stokes system matrix and - // preconditioner) or - // CompressedSparsityPattern (for the - // temperature part). We then fill these - // sparsity patterns with the nonzero - // pattern, taking into account that for - // the Stokes system matrix, there are no - // entries in the pressure-pressure block - // (but all velocity vector components - // couple with each other and with the - // pressure), and that in the Stokes - // preconditioner matrix, only the diagonal - // blocks are nonzero (we use the vector + // consisting of $2\times 2$ blocks + // (for the Stokes system matrix + // and preconditioner) or + // CompressedSparsityPattern (for + // the temperature part). We then + // fill these sparsity patterns + // with the nonzero pattern, taking + // into account that for the Stokes + // system matrix, there are no + // entries in the pressure-pressure + // block (but all velocity vector + // components couple with each + // other and with the + // pressure). Similarly, in the + // Stokes preconditioner matrix, + // only the diagonal blocks are + // nonzero, since we use the vector // Laplacian as discussed in the - // introduction, which only couples each - // vector component of the Laplacian with - // itself, but not with the other vector - // components; this, however, is subject to - // the application of constraints which - // couple vector components at the boundary - // again). + // introduction. This operator only + // couples each vector component of + // the Laplacian with itself, but + // not with the other vector + // components. Though, the operator + // is subject to the application of + // constraints which couple vector + // components at the boundary + // again. // // Then, constraints are applied to the // temporary sparsity patterns, which are @@ -1109,12 +1120,14 @@ void BoussinesqFlowProblem::setup_dofs () temperature_stiffness_matrix.reinit (temperature_sparsity_pattern); } - // As last action in this function, we need - // to set the vectors for the solution - // $\mathbf u$ and $T^k$, the old solutions - // $T^{k-1}$ and $T^{k-2}$ (required for - // time stepping) and the system right hand - // sides to their correct sizes and block + // As last action in this function, + // we need to set the vectors for + // the solution $\mathbf u$ and + // $T^k$, the old solutions + // $T^{k-1}$ and $T^{k-2}$ + // (required for time stepping) and + // the system right hand sides to + // their correct sizes and block // structure: stokes_solution.reinit (stokes_block_sizes); stokes_rhs.reinit (stokes_block_sizes); @@ -1128,6 +1141,33 @@ void BoussinesqFlowProblem::setup_dofs () + // @sect4{BoussinesqFlowProblem::assemble_stokes_preconditioner} + // + // This function assembles the matrix + // we use for preconditioning the + // Stokes system. What we need are a + // vector Laplace matrix on the + // velocity components and a mass + // matrix on the pressure + // component. We start by generating + // a quadrature object of appropriate + // order, the FEValues object that + // can give values and gradients at + // the quadrature points (together + // with quadrature weights). Next we + // create data structures for the + // cell matrix and the relation + // between local and global DoFs. The + // vectors phi_grad_u and + // phi_p are going to hold + // the values of the basis functions + // in order to faster build up the + // local matrices, as was already + // done in step-22. Before we start + // the loop over all active cells, we + // have to specify which components + // are pressure and which are + // velocity. template void BoussinesqFlowProblem::assemble_stokes_preconditioner () @@ -1160,6 +1200,25 @@ BoussinesqFlowProblem::assemble_stokes_preconditioner () stokes_fe_values.reinit (cell); local_matrix = 0; + // The creation of the local matrix + // is very simple. There are only a + // Laplace term (on the velocity) + // and a mass matrix to be + // generated, so the creation of + // the local matrix is done in two + // lines, if we first shortcut to + // the FE data. Once the local + // matrix is ready (loop over rows + // and columns in the local matrix + // on each quadrature point), we + // get the local DoF indices and + // write the local information into + // the global matrix. We do this as + // in step-27, i.e. we directly + // apply the constraints from + // hanging nodes locally. By doing + // so, we don't have to do that + // afterwards. for (unsigned int q=0; q::assemble_stokes_preconditioner () local_dof_indices, stokes_preconditioner_matrix); } - stokes_preconditioner_matrix.compress(); }