From: Wolfgang Bangerth Date: Wed, 18 Nov 2009 19:09:57 +0000 (+0000) Subject: Use numbers::PI instead of M_PI. X-Git-Tag: v8.0.0~6804 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0e8ab55dfbf1ffbb074fde5d403e5c5cde20ec82;p=dealii.git Use numbers::PI instead of M_PI. git-svn-id: https://svn.dealii.org/trunk@20130 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/source/quadrature_lib.cc b/deal.II/base/source/quadrature_lib.cc index 954b9f010a..b28a9bf96b 100644 --- a/deal.II/base/source/quadrature_lib.cc +++ b/deal.II/base/source/quadrature_lib.cc @@ -71,7 +71,7 @@ QGauss<1>::QGauss (const unsigned int n) { if (n == 0) return; - + const unsigned int m = (n+1)/2; // tolerance for the Newton @@ -165,7 +165,7 @@ QGauss<1>::QGauss (const unsigned int n) double x = .5*z; this->quadrature_points[i-1] = Point<1>(.5-x); this->quadrature_points[n-i] = Point<1>(.5+x); - + double w = 1./((1.-z*z)*pp*pp); this->weights[i-1] = w; this->weights[n-i] = w; @@ -179,7 +179,7 @@ QGaussLobatto<1>::QGaussLobatto (unsigned int n) Quadrature<1> (n) { Assert (n >= 2, ExcNotImplemented()); - + std::vector points = compute_quadrature_points(n, 1, 1); std::vector w = compute_quadrature_weights(points, 0, 0); @@ -202,7 +202,7 @@ compute_quadrature_points(const unsigned int q, { const unsigned int m = q-2; // no. of inner points std::vector x(m); - + // compute quadrature points with // a Newton algorithm. @@ -229,13 +229,13 @@ compute_quadrature_points(const unsigned int q, : double_eps * 5 ); - + // we take the zeros of the Chebyshev // polynomial (alpha=beta=-0.5) as // initial values: for (unsigned int i=0; i0) r = (r + x[k-1])/2; - do + do { s = 1.; for (unsigned int i=0; i= tolerance); - + x[k] = r; } // for @@ -277,7 +277,7 @@ compute_quadrature_weights(const std::vector &x, const unsigned int q = x.size(); std::vector w(q); long double s = 0.L; - + const long double factor = std::pow(2., alpha+beta+1) * gamma(alpha+q) * gamma(beta+q) / @@ -305,13 +305,13 @@ long double QGaussLobatto<1>::JacobiP(const long double x, // using a recursion formula. std::vector p(n+1); int v, a1, a2, a3, a4; - + // initial values P_0(x), P_1(x): p[0] = 1.0L; if (n==0) return p[0]; p[1] = ((alpha+beta+2)*x + (alpha-beta))/2; if (n==1) return p[1]; - + for (unsigned int i=1; i<=(n-1); ++i) { v = 2*i + alpha + beta; @@ -354,7 +354,7 @@ QGauss2<1>::QGauss2 () static const double wts[] = { wts_normal[0]/2., wts_normal[1]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -385,7 +385,7 @@ QGauss3<1>::QGauss3 () wts_normal[1]/2., wts_normal[2]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -395,7 +395,7 @@ QGauss3<1>::QGauss3 () template <> -QGauss4<1>::QGauss4 () +QGauss4<1>::QGauss4 () : Quadrature<1> (4) { @@ -420,7 +420,7 @@ QGauss4<1>::QGauss4 () wts_normal[2]/2., wts_normal[3]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -458,7 +458,7 @@ QGauss5<1>::QGauss5 () wts_normal[3]/2., wts_normal[4]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -501,7 +501,7 @@ QGauss6<1>::QGauss6 () wts_normal[4]/2., wts_normal[5]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -548,7 +548,7 @@ QGauss7<1>::QGauss7 () wts_normal[5]/2., wts_normal[6]/2. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -576,7 +576,7 @@ QTrapez<1>::QTrapez () static const double xpts[] = { 0.0, 1.0 }; static const double wts[] = { 0.5, 0.5 }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -593,7 +593,7 @@ QSimpson<1>::QSimpson () static const double xpts[] = { 0.0, 0.5, 1.0 }; static const double wts[] = { 1./6., 2./3., 1./6. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -610,7 +610,7 @@ QMilne<1>::QMilne () static const double xpts[] = { 0.0, .25, .5, .75, 1.0 }; static const double wts[] = { 7./90., 32./90., 12./90., 32./90., 7./90. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -629,7 +629,7 @@ QWeddle<1>::QWeddle () 27./840., 216./840., 41./840. }; - for (unsigned int i=0; isize(); ++i) + for (unsigned int i=0; isize(); ++i) { this->quadrature_points[i] = Point<1>(xpts[i]); this->weights[i] = wts[i]; @@ -639,8 +639,8 @@ QWeddle<1>::QWeddle () template <> QGaussLog<1>::QGaussLog(const unsigned int n, - const bool revert) - : + const bool revert) + : Quadrature<1> (n) { @@ -655,26 +655,26 @@ QGaussLog<1>::QGaussLog(const unsigned int n, this->quadrature_points[i] = revert ? Point<1>(1-p[n-1-i]) : Point<1>(p[i]); this->weights[i] = revert ? w[n-1-i] : w[i]; } - + } template <> std::vector QGaussLog<1>::set_quadrature_points(const unsigned int n) const { - + std::vector points(n); switch (n) - { + { case 1: points[0] = 0.3333333333333333; - break; + break; case 2: points[0] = 0.1120088061669761; points[1] = 0.6022769081187381; - break; + break; case 3: points[0] = 0.06389079308732544; @@ -694,7 +694,7 @@ QGaussLog<1>::set_quadrature_points(const unsigned int n) const points[1] = 0.1739772133208974; points[2] = 0.4117025202849029; points[3] = 0.6773141745828183; - points[4] = 0.89477136103101; + points[4] = 0.89477136103101; break; case 6: @@ -767,8 +767,8 @@ QGaussLog<1>::set_quadrature_points(const unsigned int n) const points[9] = 0.914193921640008; points[10] = 0.973860256264123; break; - - case 12: + + case 12: points[0] = 0.006548722279080035; points[1] = 0.03894680956045022; points[2] = 0.0981502631060046; @@ -781,13 +781,13 @@ QGaussLog<1>::set_quadrature_points(const unsigned int n) const points[9] = 0.850240024421055; points[10] = 0.926749682988251; points[11] = 0.977756129778486; - break; + break; default: Assert(false, ExcNotImplemented()); break; } - + return points; } @@ -796,14 +796,14 @@ template <> std::vector QGaussLog<1>::set_quadrature_weights(const unsigned int n) const { - + std::vector weights(n); switch (n) - { + { case 1: weights[0] = -1.0; - break; + break; case 2: weights[0] = -0.7185393190303845; weights[1] = -0.2814606809696154; @@ -898,10 +898,10 @@ QGaussLog<1>::set_quadrature_weights(const unsigned int n) const weights[7] = -0.04054160079499477; weights[8] = -0.01943540249522013; weights[9] = -0.006737429326043388; - weights[10] = -0.001152486965101561; + weights[10] = -0.001152486965101561; break; - - case 12: + + case 12: weights[0] = -0.09319269144393; weights[1] = -0.1497518275763289; weights[2] = -0.166557454364573; @@ -913,12 +913,12 @@ QGaussLog<1>::set_quadrature_weights(const unsigned int n) const weights[8] = -0.03007108900074863; weights[9] = -0.01424924540252916; weights[10] = -0.004899924710875609; - weights[11] = -0.000834029009809656; + weights[11] = -0.000834029009809656; break; default: Assert(false, ExcNotImplemented()); - break; + break; } return weights; @@ -927,11 +927,11 @@ QGaussLog<1>::set_quadrature_weights(const unsigned int n) const template<> -QGaussLogR<1>::QGaussLogR(const unsigned int n, +QGaussLogR<1>::QGaussLogR(const unsigned int n, const Point<1> origin, const double alpha, const bool factor_out_singularity) : - Quadrature<1>( ( (origin[0] == 0) || (origin[0] == 1) ) ? + Quadrature<1>( ( (origin[0] == 0) || (origin[0] == 1) ) ? (alpha == 1 ? n : 2*n ) : 4*n ), fraction( ( (origin[0] == 0) || (origin[0] == 1.) ) ? 1. : origin[0] ) { @@ -951,7 +951,7 @@ QGaussLogR<1>::QGaussLogR(const unsigned int n, QGaussLog<1> quad1(n, origin[0] != 0); QGaussLog<1> quad2(n); QGauss<1> quad(n); - + // Check that the origin is inside 0,1 Assert( (fraction >= 0) && (fraction <= 1), ExcMessage("Origin is outside [0,1].")); @@ -959,13 +959,13 @@ QGaussLogR<1>::QGaussLogR(const unsigned int n, // Non singular offset. This is the start of non singular quad // points. unsigned int ns_offset = (fraction == 1) ? n : 2*n; - + for(unsigned int i=0, j=ns_offset; iquadrature_points[i] = quad1.point(i)*fraction; this->weights[i] = quad1.weight(i)*fraction; - + // We need to scale with -log|fraction*alpha| if( (alpha != 1) || (fraction != 1) ) { this->quadrature_points[j] = quad.point(i)*fraction; @@ -974,14 +974,14 @@ QGaussLogR<1>::QGaussLogR(const unsigned int n, // In case we need the second quadrature as well, do it now. if(fraction != 1) { this->quadrature_points[i+n] = quad2.point(i)*(1-fraction)+Point<1>(fraction); - this->weights[i+n] = quad2.weight(i)*(1-fraction); - + this->weights[i+n] = quad2.weight(i)*(1-fraction); + // We need to scale with -log|fraction*alpha| this->quadrature_points[j+n] = quad.point(i)*(1-fraction)+Point<1>(fraction); this->weights[j+n] = -std::log(alpha/(1-fraction))*quad.weight(i)*(1-fraction); } } - if(factor_out_singularity == true) + if(factor_out_singularity == true) for(unsigned int i=0; iquadrature_points[i] != origin, ExcMessage("The singularity cannot be on a Gauss point of the same order!") ); @@ -992,7 +992,7 @@ QGaussLogR<1>::QGaussLogR(const unsigned int n, template<> -QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, +QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, const unsigned int vertex_index, const bool factor_out_singularity) : Quadrature<2>(2*n*n) @@ -1000,19 +1000,19 @@ QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, // Start with the gauss quadrature formula on the (u,v) reference // element. QGauss<2> gauss(n); - + Assert(gauss.size() == n*n, ExcInternalError()); - + // For the moment we only implemented this for the vertices of a // quadrilateral. We are planning to do this also for the support // points of arbitrary FE_Q elements, to allow the use of this // class in boundary element programs with higher order mappings. Assert(vertex_index < 4, ExcIndexRange(vertex_index, 0, 4)); - + // We create only the first one. All other pieces are rotation of // this one. // In this case the transformation is - // + // // (x,y) = (u, u tan(pi/4 v)) // // with Jacobian @@ -1024,7 +1024,7 @@ QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, std::vector > &ps = this->quadrature_points; std::vector &ws = this->weights; double pi4 = numbers::PI/4; - + for(unsigned int q=0; q &gp = gauss.point(q); ps[q][0] = gp[0]; @@ -1038,7 +1038,7 @@ QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, ps[gauss.size()+q][0] = ps[q][1]; ps[gauss.size()+q][1] = ps[q][0]; } - + // Now we distribute these vertices in the correct manner double theta = 0; switch(vertex_index) { @@ -1046,7 +1046,7 @@ QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, theta = 0; break; case 1: - // + // theta = numbers::PI/2; break; case 2: @@ -1056,14 +1056,14 @@ QGaussOneOverR<2>::QGaussOneOverR(const unsigned int n, theta = numbers::PI; break; } - + double R00 = std::cos(theta), R01 = -std::sin(theta); double R10 = std::sin(theta), R11 = std::cos(theta); - + if(vertex_index != 0) for(unsigned int q=0; q