From: mcbride Date: Fri, 24 Feb 2012 09:13:16 +0000 (+0000) Subject: step:44 changes to documentation in cc file. Needs final check and format X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=0f182fcb1533f3a0a541a659e5d963edf8134415;p=dealii-svn.git step:44 changes to documentation in cc file. Needs final check and format git-svn-id: https://svn.dealii.org/trunk@25160 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-44/step-44.cc b/deal.II/examples/step-44/step-44.cc index 6c84c4b6d7..b61ff2dda3 100644 --- a/deal.II/examples/step-44/step-44.cc +++ b/deal.II/examples/step-44/step-44.cc @@ -2908,24 +2908,79 @@ namespace Step44 // in the original $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ block. // That is, we make $\mathbf{\mathsf{K}}_{\textrm{store}}$. { - // ToDo: fixed notation to here assemble_sc(); - // $A_J = K_pJ^{-1} F_p$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{F}}_{\widetilde{p}} + // $ tangent_matrix.block(p_dof, J_dof).vmult(A.block(J_dof), system_rhs.block(p_dof)); - // $B_J = K_{JJ} K_pJ^{-1} F_p$. + // $ + // \mathsf{\mathbf{B}}_{\widetilde{J}} + // = + // \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{F}}_{\widetilde{p}} + // $ tangent_matrix.block(J_dof, J_dof).vmult(B.block(J_dof), A.block(J_dof)); - // $A_J = F_J - K_JJ K_pJ^{-1} F_p$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // \mathsf{\mathbf{F}}_{\widetilde{J}} + // - + // \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{F}}_{\widetilde{p}} + // $ A.block(J_dof).equ(1.0, system_rhs.block(J_dof), -1.0, B.block(J_dof)); - // $A_p = K_Jp^{-1} [ F_J - K_JJ K_pJ^{-1} F_p ]$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}} + // [ + // \mathsf{\mathbf{F}}_{\widetilde{J}} + // - + // \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{F}}_{\widetilde{p}} + // ] + // $ tangent_matrix.block(p_dof, J_dof).Tvmult(A.block(p_dof), A.block(J_dof)); - // $A_u = K_{up} K_Jp^{-1} [ F_J - K_{JJ} K_pJ^{-1} F_p ]$ + // $ + // \mathsf{\mathbf{A}}_{\mathbf{u}} + // = + // \mathsf{\mathbf{K}}_{\mathbf{u} \widetilde{p}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}} + // [ + // \mathsf{\mathbf{F}}_{\widetilde{J}} + // - + // \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{F}}_{\widetilde{p}} + // ] + // $ tangent_matrix.block(u_dof, p_dof).vmult(A.block(u_dof), A.block(p_dof)); - // $F_{con} = F_u - K_{up} K_Jp^{-1} [ F_J - K_{JJ} K_pJ^{-1} F_p ]$ + // $ + // \mathsf{\mathbf{F}}_{\text{con}} + // = + // \mathsf{\mathbf{F}}_{\mathbf{u}} + // - + // \mathsf{\mathbf{K}}_{\mathbf{u} \widetilde{p}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{J} \widetilde{p}} + // [ + // \mathsf{\mathbf{F}}_{\widetilde{J}} + // - + // \mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{K}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{K}}_{\widetilde{p}} + // ] + // $ system_rhs.block(u_dof) -= A.block(u_dof); timer.enter_subsection("Linear solver"); @@ -2992,40 +3047,105 @@ namespace Step44 // The next step after solving the displacement // problem is to post-process to get the // dilatation solution from the - // substitution $dJ = KpJ^{-1} (F_p - K_pu - // du )$: + // substitution: + // $ + // d \widetilde{\mathbf{\mathsf{J}}} + // = \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} \bigl[ + // \mathbf{\mathsf{F}}_{\widetilde{p}} + // - \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} + // \bigr] + // $ { - // $A_p = K_{pu} du$ + // $ + // \mathbf{\mathsf{A}}_{\widetilde{p}} + // = + // \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} + // $ tangent_matrix.block(p_dof, u_dof).vmult(A.block(p_dof), newton_update.block(u_dof)); - // $A_p = -K_{pu} du$ + // $ + // \mathbf{\mathsf{A}}_{\widetilde{p}} + // = + // -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} + // $ A.block(p_dof) *= -1.0; - // $A_p = F_p - K_{pu} du$ + // $ + // \mathbf{\mathsf{A}}_{\widetilde{p}} + // = + // \mathbf{\mathsf{F}}_{\widetilde{p}} + // -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} + // $ A.block(p_dof) += system_rhs.block(p_dof); - // $dJ = K_pJ^{-1} [ F_p - K_{pu} du ]$ + // $ + // d\mathbf{\mathsf{\widetilde{J}}} + // = + // \mathbf{\mathsf{K}}^{-1}_{\widetilde{p}\widetilde{J}} + // [ + // \mathbf{\mathsf{F}}_{\widetilde{p}} + // -\mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} + // ] + // $ tangent_matrix.block(p_dof, J_dof).vmult(newton_update.block(J_dof), A.block(p_dof)); } + // we insure here that any Dirichlet constraints + // are distributed on the updated solution: constraints.distribute(newton_update); // Finally we solve for the pressure - // update with the substitution $dp = - // K_Jp^{-1} [ R_J - K_{JJ} dJ ]$ + // update with the substitution: + // $ + // d \widetilde{\mathbf{\mathsf{p}}} + // = + // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} + // \bigl[ + // \mathbf{\mathsf{F}}_{\widetilde{J}} + // - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // d \widetilde{\mathbf{\mathsf{J}}} + // \bigr] + // $ { - // $A_J = K_{JJ} dJ$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // d \widetilde{\mathbf{\mathsf{J}}} + // $ tangent_matrix.block(J_dof, J_dof).vmult(A.block(J_dof), newton_update.block(J_dof)); - // $A_J = -K_{JJ} dJ$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // -\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // d \widetilde{\mathbf{\mathsf{J}}} + // $ A.block(J_dof) *= -1.0; - // $A_J = F_J - K_{JJ} dJ$ + // $ + // \mathsf{\mathbf{A}}_{\widetilde{J}} + // = + // \mathsf{\mathbf{F}}_{\widetilde{J}} + // - + // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // d \widetilde{\mathbf{\mathsf{J}}} + // $ A.block(J_dof) += system_rhs.block(J_dof); - // $dp = K_Jp^{-1} [F_J - K_{JJ} dJ]$ + // and finally.... + // $ + // d \widetilde{\mathbf{\mathsf{p}}} + // = + // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} + // \bigl[ + // \mathbf{\mathsf{F}}_{\widetilde{J}} + // - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // d \widetilde{\mathbf{\mathsf{J}}} + // \bigr] + // $ tangent_matrix.block(p_dof, J_dof).Tvmult(newton_update.block(p_dof), A.block(J_dof)); } - // At the end, we can distribute all + // We are now at the end, so we distribute all // constrained dofs back to the Newton // update: constraints.distribute(newton_update); @@ -3041,13 +3161,18 @@ namespace Step44 // need the inverse of one of the blocks. However, since the pressure and // dilatation variables are discontinuous, the static condensation (SC) // operation can be done on a per-cell basis and we can produce the inverse of -// the block-diagonal $K_{pt}$ block by inverting the local blocks. We can again +// the block-diagonal $ \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}$ + // block by inverting the local blocks. We can again // use TBB to do this since each operation will be independent of one another. // -// Using the TBB via the WorkStream class, we assemble the contributions to -// add to $K_{uu}$ to form $K_{con}$ from each element's contributions. These -// contributions are then added to the glabal stiffness matrix. Given this -// description, the following two functions should be obvious: +// Using the TBB via the WorkStream class, we assemble the contributions to form +// $ +// \mathbf{\mathsf{K}}_{\textrm{con}} +// = \bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr] +// $ +// from each element's contributions. These +// contributions are then added to the global stiffness matrix. Given this +// description, the following two functions should be clear: template void Solid::assemble_sc() { @@ -3103,34 +3228,63 @@ namespace Step44 // interpolations mean that their is no // coupling of the local contributions at the // global level. This is not the case with the u dof. - // In other words, $k_{Jp}, k_{pJ} and k_{JJ}$, when extracted + // In other words, + // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{p}}$, + // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{p}}$ + // and + // $\mathsf{\mathbf{k}}_{\widetilde{J} \widetilde{p}}$, + // when extracted // from the global stiffness matrix are the element - // contributions. This is not the case for $k_{uu}$. + // contributions. + // This is not the case for + // $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$ + // + // Note: a lower-case symbol is used to denote + // element stiffness matrices. // Currently the matrix corresponding to // the dof associated with the current element - // (denoted somewhat loosely as k) is of the form - // @code - // | k_uu | k_up | 0 | - // | k_pu | 0 | k_pJ | - // | 0 | k_Jp | k_JJ | - // @endcode + // (denoted somewhat loosely as $\mathsf{\mathbf{k}}$) + // is of the form: + // @f{align*} + // \begin{bmatrix} + // \mathbf{\mathsf{k}}_{uu} & \mathbf{\mathsf{k}}_{u\widetilde{p}} & \mathbf{0} + // \\ + // \mathbf{\mathsf{k}}_{\widetilde{p}u} & \mathbf{0} & \mathbf{\mathsf{k}}_{\widetilde{p}\widetilde{J}} + // \\ + // \mathbf{0} & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{p}} & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{J}} + // \end{bmatrix} + // @f} // // We now need to modify it such that it appear as - // @code - // | k_con | k_up | 0 | - // | k_pu | 0 | k_pJ^-1 | - // | 0 | k_Jp | k_JJ | - // @endcode - // with $k_{con} = k_{uu} + k_{\bar b}$ + // @f{align*} + // \begin{bmatrix} + // \mathbf{\mathsf{k}}_{\textrm{con}} & \mathbf{\mathsf{k}}_{u\widetilde{p}} & \mathbf{0} + // \\ + // \mathbf{\mathsf{k}}_{\widetilde{p}u} & \mathbf{0} & \mathbf{\mathsf{k}}_{\widetilde{p}\widetilde{J}}^{-1} + // \\ + // \mathbf{0} & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{p}} & \mathbf{\mathsf{k}}_{\widetilde{J}\widetilde{J}} + // \end{bmatrix} + // @f} + // with $\mathbf{\mathsf{k}}_{\textrm{con}} = \bigl[ \mathbf{\mathsf{k}}_{uu} +\overline{\overline{\mathbf{\mathsf{k}}}}~ \bigr]$ // where - // $k_{\bar b} = k_{up} k_{bar} k_{pu}$ + // $ \overline{\overline{\mathbf{\mathsf{k}}}} := + // \mathbf{\mathsf{k}}_{u\widetilde{p}} \overline{\mathbf{\mathsf{k}}} \mathbf{\mathsf{k}}_{\widetilde{p}u} + // $ // and - // $k_{bar} = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1}$. + // $ + // \overline{\mathbf{\mathsf{K}}} = + // \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} + // \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} + // $. // // At this point, we need to take note of // the fact that global data already exists - // in the $K_{uu}, K_{pt}, K_{tp}$ sub-blocks. So + // in the $\mathsf{\mathbf{K}}_{uu}$, + // $\mathsf{\mathbf{K}}_{\widetilde{p} \widetilde{J}}$ + // and + // $\mathsf{\mathbf{K}}_{\widetilde{J} \widetilde{p}}$ + // sub-blocks. So // if we are to modify them, we must // account for the data that is already // there (i.e. simply add to it or remove @@ -3139,48 +3293,56 @@ namespace Step44 // operation, we need to take this into // account // - // For the $K_{uu}$ block in particular, this + // For the $\mathsf{\mathbf{K}}_{uu}$ block in particular, this // means that contributions have been added // from the surrounding cells, so we need // to be careful when we manipulate this // block. We can't just erase the - // subblocks. + // sub-blocks. // // This is the strategy we will employ to - // get the subblocks we want: + // get the sub-blocks we want: // - // - $k_{store}$: - // Since we don't have access to $k_{uu}$, + // - $ {\mathbf{\mathsf{k}}}_{\textrm{store}}$: + // Since we don't have access to $\mathsf{\mathbf{k}}_{uu}$, // but we know its contribution is added to - // the global $K_{uu}$ matrix, we just want + // the global $\mathsf{\mathbf{K}}_{uu}$ matrix, we just want // to add the element wise - // static-condensation $k_{\bar b}$. + // static-condensation $\overline{\overline{\mathbf{\mathsf{k}}}}$. // - // - $k_{pJ}^{-1}$: Similarly, $k_{pJ}$ exists in + // - $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$: + // Similarly, $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ exists in // the subblock. Since the copy // operation is a += operation, we // need to subtract the existing - // $k_{pJ}$ submatrix in addition to + // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ + // submatrix in addition to // "adding" that which we wish to // replace it with. // - // - $k_{Jp}^{-1}$: Since the global matrix + // - $\mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}}$: + // Since the global matrix // is symmetric, this block is the // same as the one above and we - // can simply use $k_{pJ}^{-1}$ as a - // substitute for this one + // can simply use + // $\mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}}$ + // as a substitute for this one. // // We first extract element data from the // system matrix. So first we get the // entire subblock for the cell, then - // extract $k$ for the dofs associated with + // extract $\mathsf{\mathbf{k}}$ + // for the dofs associated with // the current element AdditionalTools::extract_submatrix(data.local_dof_indices, data.local_dof_indices, tangent_matrix, data.k_orig); - // and next the local matrices for $k_{pu}$, - // $k_{pJ}$ and $k_{JJ}$ + // and next the local matrices for + // $\mathsf{\mathbf{k}}_{ \widetilde{p} \mathbf{u}}$ + // $\mathsf{\mathbf{k}}_{ \widetilde{p} \widetilde{J}}$ + // and + // $\mathsf{\mathbf{k}}_{ \widetilde{J} \widetilde{J}}$: AdditionalTools::extract_submatrix(element_indices_p, element_indices_u, data.k_orig, @@ -3194,30 +3356,63 @@ namespace Step44 data.k_orig, data.k_JJ); - // To get the inverse of $k_{pJ}$, we invert it + // To get the inverse of + // $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$, + // we invert it // directly. This operation is relatively - // inexpensive since $k_{pJ}$ is - // block-diagonal. + // inexpensive since $\mathsf{\mathbf{k}}_{\widetilde{p} \widetilde{J}}$ + // since block-diagonal. data.k_pJ_inv.invert(data.k_pJ); // Now we can make condensation terms to - // add to the $k_{uu}$ block and put them in - // the cell local matrix $A = k_pJ^{-1} k_{pu}$: - data.k_pJ_inv.mmult(data.A, data.k_pu); - // $B = k_{JJ} k_{pJ}^{-1} k_{pu}$ + // add to the $\mathsf{\mathbf{k}}_{\mathbf{u} \mathbf{u}}$ + // block and put them in + // the cell local matrix + // $ + // \mathsf{\mathbf{A}} + // = + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}} + // $: + data.k_pJ_inv.mmult(data.A, data.k_pu); + // $ + // \mathsf{\mathbf{B}} + // = + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}} + // $ data.k_JJ.mmult(data.B, data.A); - // $C = k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$ + // $ + // \mathsf{\mathbf{C}} + // = + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}} + // $ data.k_pJ_inv.Tmmult(data.C, data.B); - // $k_{\bar b} = k_{up} k_{Jp}^{-1} k_{JJ} k_{pJ}^{-1} k_{pu}$ + // $ + // \overline{\overline{\mathsf{\mathbf{k}}}} + // = + // \mathsf{\mathbf{k}}_{\mathbf{u} \widetilde{p}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{p}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{J} \widetilde{J}} + // \mathsf{\mathbf{k}}^{-1}_{\widetilde{p} \widetilde{J}} + // \mathsf{\mathbf{k}}_{\widetilde{p} \mathbf{u}} + // $ data.k_pu.Tmmult(data.k_bbar, data.C); AdditionalTools::replace_submatrix(element_indices_u, element_indices_u, data.k_bbar, data.cell_matrix); - // Next we place $k_{pJ}^{-1}$ in the $k_{pJ}$ + // Next we place + // $\mathsf{\mathbf{k}}^{-1}_{ \widetilde{p} \widetilde{J}}$ + // in the + // $\mathsf{\mathbf{k}}_{ \widetilde{p} \widetilde{J}}$ // block for post-processing. Note again - // that we need to remove the k_{pJ} + // that we need to remove the // contribution that already exists there. data.k_pJ_inv.add(-1.0, data.k_pJ); AdditionalTools::replace_submatrix(element_indices_p,