From: Wolfgang Bangerth Date: Wed, 21 May 2008 14:43:17 +0000 (+0000) Subject: Document the run() function. X-Git-Tag: v8.0.0~9106 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=1524e6b400bb867910b2e2c780e8932bb4a8ade4;p=dealii.git Document the run() function. git-svn-id: https://svn.dealii.org/trunk@16154 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-33/step-33.cc b/deal.II/examples/step-33/step-33.cc index 2058cba48b..6880bad58a 100644 --- a/deal.II/examples/step-33/step-33.cc +++ b/deal.II/examples/step-33/step-33.cc @@ -2960,13 +2960,23 @@ void ConservationLaw::output_results () const // @sect4{ConservationLaw::run} - // Contains the initialization - // the time loop, and the inner Newton iteration. + // This function contains the top-level logic + // of this program: initialization, the time + // loop, and the inner Newton iteration. + // + // At the beginning, we read the mesh file + // specified by the parameter file, setup the + // DoFHandler and various vectors, and then + // interpolate the given initial conditions + // on this mesh. We then perform a number of + // mesh refinements, based on the initial + // conditions, to obtain a mesh that is + // already well adapted to the starting + // solution. At the end of this process, we + // output the initial solution. template void ConservationLaw::run () { - - // Open and load the mesh. { GridIn grid_in; grid_in.attach_triangulation(triangulation); @@ -2977,9 +2987,6 @@ void ConservationLaw::run () grid_in.read_ucd(input_file); } - // Initialize fields and matrices. - // First we need to distribute the - // DoFs. dof_handler.clear(); dof_handler.distribute_dofs (fe); @@ -2996,15 +3003,14 @@ void ConservationLaw::run () current_solution = old_solution; predictor = old_solution; - // Initial refinement. We apply the ic, - // estimate, refine, and repeat until - // happy. if (parameters.do_refine == true) - for (unsigned int i = 0; i < parameters.shock_levels; i++) + for (unsigned int i=0; i refinement_indicators (triangulation.n_active_cells()); + compute_refinement_indicators(refinement_indicators); refine_grid(refinement_indicators); + setup_system(); VectorTools::interpolate(dof_handler, @@ -3015,101 +3021,135 @@ void ConservationLaw::run () output_results (); - // Determine when we will output next. + // We then enter into the main time + // stepping loop. At the top we simply + // output some status information so one + // can keep track of where a computation + // is, as well as the header for a table + // that indicates progress of the nonlinear + // inner iteration: + Vector newton_update (dof_handler.n_dofs()); + double time = 0; double next_output = time + parameters.output_step; - // @sect4{Main time stepping loop} predictor = old_solution; - Vector newton_update (dof_handler.n_dofs()); while (time < parameters.final_time) { - std::cout << "T=" << time << ", "; - - - std::cout << " Number of active cells: " + std::cout << "T=" << time << std::endl + << " Number of active cells: " << triangulation.n_active_cells() - << std::endl; - - - std::cout << " Number of degrees of freedom: " + << std::endl + << " Number of degrees of freedom: " << dof_handler.n_dofs() + << std::endl << std::endl; - - bool nonlin_done = false; - - // Print some relevant information during the - // Newton iteration. - std::cout << "NonLin Res: Lin Iter Lin Res" << std::endl; - std::cout << "______________________________________" << std::endl; - - const unsigned int max_nonlin = 7; + + std::cout << " NonLin Res: Lin Iter Lin Res" << std::endl + << " ______________________________________" << std::endl; + + // Then comes the inner Newton + // iteration to solve the nonlinear + // problem in each time step. The way + // it works is to reset matrix and + // right hand side to zero, then + // assemble the linear system. If the + // norm of the right hand side is small + // enough, then we declare that the + // Newton iteration has + // converged. Otherwise, we solve the + // linear system, update the current + // solution with the Newton increment, + // and output convergence + // information. At the end, we check + // that the number of Newton iterations + // is not beyond a limit of 10 -- if it + // is, it appears likely that + // iterations are diverging and further + // iterations would do no good. If that + // happens, we throw an exception that + // will be caught in + // main() with status + // information being displayed before + // the program aborts. + // + // Note that the way we write the + // AssertThrow macro below is by and + // large equivalent to writing + // something like if + // (!(nonlin_iter @<= 10)) throw + // ExcMessage ("No convergence in + // nonlinear solver");. The only + // significant difference is that + // AssertThrow also makes sure that the + // exception being thrown carries with + // it information about the location + // (file name and line number) where it + // was generated. This is not overly + // critical here, because there is only + // a single place where this sort of + // exception can happen; however, it is + // generally a very useful tool when + // one wants to find out where an error + // occurred. unsigned int nonlin_iter = 0; - - // @sect5{Newton iteration} current_solution = predictor; - while (!nonlin_done) { - Matrix->PutScalar(0); - Matrix->FillComplete(); + while (true) + { + Matrix->PutScalar(0); + Matrix->FillComplete(); - right_hand_side = 0; - assemble_system (); + right_hand_side = 0; + assemble_system (); - // Flash a star to the screen so one can - // know when the assembly has stopped and the linear - // old_solution is starting. - std::cout << "* " << std::flush; - - // Test against a (hardcoded) nonlinear tolderance. - // Do not solve the linear system at the last step - // (since it would be a waste). - - const double res_norm = right_hand_side.l2_norm(); - if (std::fabs(res_norm) < 1e-10) - { - nonlin_done = true; - std::printf("%-16.3e (converged)\n", res_norm); - } - else - { - // Solve the linear system and update with the - // delta. - newton_update = 0; + const double res_norm = right_hand_side.l2_norm(); + if (std::fabs(res_norm) < 1e-10) + { + std::printf(" %-16.3e (converged)\n\n", res_norm); + break; + } + else + { + newton_update = 0; - std::pair convergence - = solve (newton_update); + std::pair convergence + = solve (newton_update); - current_solution.add(1.0, newton_update); + current_solution += newton_update; - std::printf("%-16.3e %04d %-5.2e\n", - res_norm, convergence.first, convergence.second); - } - - ++nonlin_iter; - - AssertThrow (nonlin_iter <= max_nonlin, - ExcMessage ("No convergence in nonlinear solver")); - } - - // Various post convergence tasks. - - // We use a predictor to try and make - // adaptivity work better. The idea is to - // try and refine ahead of a front, rather - // than stepping into a coarse set of - // elements and smearing the old_solution. This - // simple time extrapolator does the job. - predictor = current_solution; - predictor.sadd(3/2.0, -1/2.0, old_solution); - - old_solution = current_solution; + std::printf(" %-16.3e %04d %-5.2e\n", + res_norm, convergence.first, convergence.second); + } - Vector refinement_indicators (triangulation.n_active_cells()); - compute_refinement_indicators(refinement_indicators); + ++nonlin_iter; + AssertThrow (nonlin_iter <= 10, + ExcMessage ("No convergence in nonlinear solver")); + } + // We only get to this point if the + // Newton iteration has converged, so + // do various post convergence tasks + // here: + // + // First, we update the time and + // produce graphical output if so + // desired. Then we update a predictor + // for the solution at the next time + // step by approximating $\mathbf + // w^{n+1}\approx \frac 32 \mathbf w^n + // -\frac 12 \mathbf w^{n-1}$ to try + // and make adaptivity work better. + // The idea is to try and refine ahead + // of a front, rather than stepping + // into a coarse set of elements and + // smearing the old_solution. This + // simple time extrapolator does the + // job. With this, we then refine the + // mesh if so desired by the user, and + // finally continue on with the next + // time step: time += parameters.time_step; - // Output if it is time. if (parameters.output_step < 0) output_results (); else if (time >= next_output) @@ -3118,9 +3158,16 @@ void ConservationLaw::run () next_output += parameters.output_step; } - // Refine, if refinement is selected. + predictor = current_solution; + predictor.sadd(3/2.0, -1/2.0, old_solution); + + old_solution = current_solution; + if (parameters.do_refine == true) { + Vector refinement_indicators (triangulation.n_active_cells()); + compute_refinement_indicators(refinement_indicators); + refine_grid(refinement_indicators); setup_system();