From: Martin Kronbichler Date: Thu, 31 Aug 2023 07:13:48 +0000 (+0200) Subject: Implement face evaluation for Raviart-Thomas X-Git-Tag: relicensing~510^2~5 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=179f65878389679003b8e23775dd6db6de505086;p=dealii.git Implement face evaluation for Raviart-Thomas --- diff --git a/include/deal.II/matrix_free/evaluation_kernels.h b/include/deal.II/matrix_free/evaluation_kernels.h index 9e7dbc1a75..b13d8a4ae2 100644 --- a/include/deal.II/matrix_free/evaluation_kernels.h +++ b/include/deal.II/matrix_free/evaluation_kernels.h @@ -85,12 +85,6 @@ namespace internal static const EvaluatorVariant variant = evaluate_evenodd; }; - template - struct EvaluatorSelector - { - static const EvaluatorVariant variant = evaluate_raviart_thomas; - }; - /** @@ -1828,71 +1822,94 @@ namespace internal FEEvaluationData &fe_eval, const bool add_into_values_array = false); - private: - template + template static void work_normal(const MatrixFreeFunctions::UnivariateShapeData &data, const Number *in, Number *out, - const bool add_into_result = false) + const bool add_into_result = false, + const int subface_index_1d = 0) { AssertIndexRange(direction, dim); - constexpr int n_rows = fe_degree + 1; - constexpr int n_columns = n_q_points_1d; - constexpr int mm = contract_over_rows ? n_rows : n_columns; - constexpr int nn = contract_over_rows ? n_columns : n_rows; - const Number2 *shape_data = data.shape_values_eo.data(); + AssertDimension(fe_degree, data.fe_degree); + AssertDimension(n_q_points_1d, data.n_q_points_1d); + constexpr int n_rows = fe_degree + 1; + constexpr int n_columns = n_q_points_1d; + constexpr int mm = contract_over_rows ? n_rows : n_columns; + constexpr int nn = contract_over_rows ? n_columns : n_rows; + const Number2 *shape_data = + symmetric_evaluate ? + data.shape_values_eo.data() : + data.values_within_subface[subface_index_1d].data(); Assert(shape_data != nullptr, ExcNotInitialized()); Assert(contract_over_rows == false || !add_into_result, ExcMessage("Cannot add into result if contract_over_rows = true")); - constexpr int n_blocks1 = Utilities::pow(fe_degree, direction); - constexpr int n_blocks2 = Utilities::pow(fe_degree, dim - direction - 1); + constexpr int n_blocks1 = Utilities::pow(fe_degree, direction); + constexpr int n_blocks2 = Utilities::pow(fe_degree, dim - direction - 1); + constexpr int stride_in = contract_over_rows ? 1 : extra_stride; + constexpr int stride_out = contract_over_rows ? extra_stride : 1; + constexpr EvaluatorVariant variant = + symmetric_evaluate ? evaluate_evenodd : evaluate_general; for (int i2 = 0; i2 < n_blocks2; ++i2) { for (int i1 = 0; i1 < n_blocks1; ++i1) { if (contract_over_rows == false && add_into_result) - apply_matrix_vector_product(shape_data, in, out); else - apply_matrix_vector_product(shape_data, in, out); - ++in; - ++out; + in += stride_in; + out += stride_out; } - in += n_blocks1 * (mm - 1); - out += n_blocks1 * (nn - 1); + in += n_blocks1 * (mm - 1) * stride_in; + out += n_blocks1 * (nn - 1) * stride_out; } } - template + template static void work_tangential( const MatrixFreeFunctions::UnivariateShapeData &data, - Number *ptr) + const Number *in, + Number *out, + const int subface_index_1d = 0) { AssertIndexRange(direction, dim); + AssertDimension(fe_degree - 1, data.fe_degree); + AssertDimension(n_q_points_1d, data.n_q_points_1d); static_assert(direction != normal_direction, "Cannot interpolate tangentially in normal direction"); - constexpr int n_rows = fe_degree; - constexpr int n_columns = n_q_points_1d; - const Number2 *shape_data = data.shape_values_eo.data(); + constexpr int n_rows = fe_degree; + constexpr int n_columns = n_q_points_1d; + const Number2 *shape_data = + symmetric_evaluate ? + data.shape_values_eo.data() : + data.values_within_subface[subface_index_1d].data(); Assert(shape_data != nullptr, ExcNotInitialized()); constexpr int n_blocks1 = @@ -1908,56 +1925,56 @@ namespace internal (Utilities::pow(fe_degree, dim - 2 - direction) * n_q_points_1d) : 1); - // Since we perform an in-place interpolation, we must run the step + constexpr EvaluatorVariant variant = + symmetric_evaluate ? evaluate_evenodd : evaluate_general; + + // Since we may perform an in-place interpolation, we must run the step // expanding the size of the basis backward ('contract_over_rows' aka - // 'evaluate' case). + // 'evaluate' case), so shift the pointers and decrement during the loop if (contract_over_rows) { - const Number *in = - ptr + (n_blocks2 - 1) * n_blocks1 * n_rows + n_blocks1 - 1; - Number *out = - ptr + (n_blocks2 - 1) * n_blocks1 * n_columns + n_blocks1 - 1; + in += (n_blocks2 - 1) * n_blocks1 * n_rows + n_blocks1 - 1; + out += extra_stride * + ((n_blocks2 - 1) * n_blocks1 * n_columns + n_blocks1 - 1); for (int i2 = 0; i2 < n_blocks2; ++i2) { for (int i1 = 0; i1 < n_blocks1; ++i1) { - apply_matrix_vector_product(shape_data, in, out); --in; - --out; + out -= extra_stride; } in -= n_blocks1 * (n_rows - 1); - out -= n_blocks1 * (n_columns - 1); + out -= n_blocks1 * (n_columns - 1) * extra_stride; } } else { - const Number *in = ptr; - Number *out = ptr; for (int i2 = 0; i2 < n_blocks2; ++i2) { for (int i1 = 0; i1 < n_blocks1; ++i1) { - apply_matrix_vector_product(shape_data, in, out); - ++in; + in += extra_stride; ++out; } - in += n_blocks1 * (n_columns - 1); + in += n_blocks1 * (n_columns - 1) * extra_stride; out += n_blocks1 * (n_rows - 1); } } @@ -2011,8 +2028,8 @@ namespace internal gradients, do_values); if constexpr (dim > 2) - work_tangential<2, 0, false>(shape_data[1], values); - work_tangential<1, 0, false>(shape_data[1], values); + work_tangential<2, 0, false>(shape_data[1], values, values); + work_tangential<1, 0, false>(shape_data[1], values, values); work_normal<0, false>(shape_data[0], values, values_dofs, @@ -2028,8 +2045,8 @@ namespace internal gradients, do_values); if constexpr (dim > 2) - work_tangential<2, 1, false>(shape_data[1], values); - work_tangential<0, 1, false>(shape_data[1], values); + work_tangential<2, 1, false>(shape_data[1], values, values); + work_tangential<0, 1, false>(shape_data[1], values, values); work_normal<1, false>(shape_data[0], values, values_dofs, @@ -2046,8 +2063,8 @@ namespace internal values, gradients, do_values); - work_tangential<1, 2, false>(shape_data[1], values); - work_tangential<0, 2, false>(shape_data[1], values); + work_tangential<1, 2, false>(shape_data[1], values, values); + work_tangential<0, 2, false>(shape_data[1], values, values); work_normal<2, false>(shape_data[0], values, values_dofs, @@ -2057,9 +2074,9 @@ namespace internal else { work_normal<0, true>(shape_data[0], values_dofs, values); - work_tangential<1, 0, true>(shape_data[1], values); + work_tangential<1, 0, true>(shape_data[1], values, values); if constexpr (dim > 2) - work_tangential<2, 0, true>(shape_data[1], values); + work_tangential<2, 0, true>(shape_data[1], values, values); if ((evaluation_flag & EvaluationFlags::gradients) != 0u) evaluate_gradients_collocation(shape_data[0], values, @@ -2070,9 +2087,9 @@ namespace internal values_dofs += dofs_per_component; work_normal<1, true>(shape_data[0], values_dofs, values); - work_tangential<0, 1, true>(shape_data[1], values); + work_tangential<0, 1, true>(shape_data[1], values, values); if constexpr (dim > 2) - work_tangential<2, 1, true>(shape_data[1], values); + work_tangential<2, 1, true>(shape_data[1], values, values); if ((evaluation_flag & EvaluationFlags::gradients) != 0u) evaluate_gradients_collocation(shape_data[0], values, @@ -2085,8 +2102,8 @@ namespace internal values_dofs += dofs_per_component; work_normal<2, true>(shape_data[0], values_dofs, values); - work_tangential<0, 2, true>(shape_data[1], values); - work_tangential<1, 2, true>(shape_data[1], values); + work_tangential<0, 2, true>(shape_data[1], values, values); + work_tangential<1, 2, true>(shape_data[1], values, values); if ((evaluation_flag & EvaluationFlags::gradients) != 0u) evaluate_gradients_collocation(shape_data[0], values, @@ -2852,538 +2869,320 @@ namespace internal { using Number2 = typename FEEvaluationData::shape_info_number_type; - using EvalGeneral = EvaluatorTensorProduct; - - template - static EvalType - create_evaluator_tensor_product( - const MatrixFreeFunctions::UnivariateShapeData &data, - const unsigned int subface_index, - const unsigned int direction) - { - if (subface_index >= GeometryInfo::max_children_per_cell) - return EvalType(data.shape_values, - data.shape_gradients, - data.shape_hessians); - else - { - const unsigned int index = - direction == 0 ? subface_index % 2 : subface_index / 2; - return EvalType(data.values_within_subface[index], - data.gradients_within_subface[index], - data.hessians_within_subface[index]); - } - } - template - static void - evaluate_or_integrate_in_face( - const EvaluationFlags::EvaluationFlags evaluation_flag, - Number *values_dofs, - FEEvaluationData &fe_eval, - Number *scratch_data, - const unsigned int subface_index, - const unsigned int face_no) - { - const unsigned int face_direction = face_no / 2; - - // We first evaluate the anisotropic faces, i.e the faces where - // face_direction != component. Note that the call order here is not - // important, since the pointers are shifted accordingly within the - // function. However, this is the order in which the components will be in - // the quadrature points. Furthermore, the isotropic faces have no "normal - // direction" but we still pass in normal_dir = 2 since this is used for - // the pointers. - // ----------------------------------------------------------------------------------- - // | | Anisotropic faces | Isotropic faces| - // | Face dir | comp, coords, normal_dir | comp, coords, normal_dir | comp, coords | - // | --------------------------------------------------------------------------------| - // | 0 | 1, y, 0 | - | 0, y | - // | 1 | 0, x, 0 | - | 1, x | - // | --------------------------------------------------------------------------------| - // | 0 | 1, yz, 0 | 2, yz, 1 | 0, yz | - // | 1 | 2, zx, 0 | 0, zx, 1 | 1, zx | - // | 2 | 0, xy, 0 | 1, xy, 1 | 2, xy | - // ----------------------------------------------------------------------------------- - evaluate_in_face_apply<0>(values_dofs, - fe_eval, - scratch_data, - evaluation_flag, - face_direction, - subface_index, - std::integral_constant()); - - if (dim == 3) - evaluate_in_face_apply<1>(values_dofs, - fe_eval, - scratch_data, - evaluation_flag, - face_direction, - subface_index, - std::integral_constant()); - - evaluate_in_face_apply<2>(values_dofs, - fe_eval, - scratch_data, - evaluation_flag, - face_direction, - subface_index, - std::integral_constant()); - } - - /* - * Helper function which applies the 1d kernels for on one - * component in a face. normal_dir indicates the direction of the continuous - * component of the RT space. std::integral_constant is the - * evaluation path, and std::integral_constant below is the - * integration path. These two functions can be fused together since all - * offsets and pointers are the exact same. + /** + * Apply the sum factorization kernels within the face for Raviart-Thomas + * elements for either evaluation or integration */ - template + template static inline void - evaluate_in_face_apply( - Number *values_dofs, - FEEvaluationData &fe_eval, - Number *scratch_data, + evaluate_or_integrate_in_face( const EvaluationFlags::EvaluationFlags evaluation_flag, - const unsigned int face_direction, - const unsigned int subface_index, - std::integral_constant) + const std::vector> + &shape_data, + Number *values_dofs_in, + Number *values_quad, + Number *gradients_quad, + Number *scratch_data, + const unsigned int subface_index, + const unsigned int face_direction) { - using EvalNormal = - EvaluatorTensorProductAnisotropic dofs_per_direction{ + {{{n_rows_n, n_rows_t, n_rows_t}}, + {{n_rows_t, n_rows_n, n_rows_t}}, + {{n_rows_t, n_rows_t, n_rows_n}}}}; + (void)subface_index; + // TODO: This is currently not implemented, but the test + // matrix_vector_rt_face_03 apparently works without it -> check + // if (subface_index < GeometryInfo::max_children_per_cell) + // Assert(false, ExcNotImplemented()); + + using EvalAniso = + FEEvaluationImpl; + using Eval = EvaluatorTensorProduct; - using EvalTangent = - EvaluatorTensorProductAnisotropic; - using TempEval0 = typename std:: - conditional::type; - using TempEval1 = typename std:: - conditional::type; - using Eval0 = typename std:: - conditional::type; - using Eval1 = typename std:: - conditional::type; - - const auto &shape_info = fe_eval.get_shape_info(); - Eval0 eval0 = create_evaluator_tensor_product( - ((normal_dir == 0) ? shape_info.data[0] : shape_info.data[1]), - subface_index, - 0); - Eval1 eval1 = create_evaluator_tensor_product( - ((normal_dir == 1) ? shape_info.data[0] : shape_info.data[1]), - subface_index, - 1); - - constexpr std::size_t n_q_points = Utilities::pow(n_q_points_1d, dim - 1); - const std::size_t n_dofs_tangent = shape_info.dofs_per_component_on_face; - const std::size_t n_dofs_normal = - n_dofs_tangent - Utilities::pow(fe_degree, dim - 2); - const std::size_t dofs_stride = - (std::is_same_v) ? n_dofs_normal : n_dofs_tangent; - - static constexpr dealii::ndarray component_table = { - {{{1, 2, 0}}, {{2, 0, 1}}, {{0, 1, 2}}}}; - const unsigned int component = - (dim == 2 && normal_dir == 0 && face_direction == 1) ? - 0 : - component_table[face_direction][normal_dir]; - - // Initial offsets - values_dofs += - 3 * ((component == 0) ? - 0 : - ((component == 1) ? - ((face_direction == 0) ? n_dofs_normal : n_dofs_tangent) : - ((face_direction == 2) ? n_dofs_tangent + n_dofs_tangent : - n_dofs_normal + n_dofs_tangent))); - const unsigned int shift = (dim == 2) ? normal_dir / 2 : normal_dir; - Number *values_quad = fe_eval.begin_values() + n_q_points * shift; - Number *gradients_quad = - fe_eval.begin_gradients() + dim * n_q_points * shift; - Number *hessians_quad = - fe_eval.begin_hessians() + dim * (dim + 1) / 2 * n_q_points * shift; - - // Evaluation path - if ((evaluation_flag & EvaluationFlags::values) && - !(evaluation_flag & EvaluationFlags::gradients)) + std::array values_dofs_offsets = {}; + for (unsigned int comp = 0; comp < dim - 1; ++comp) { - switch (dim) - { - case 3: - eval0.template values<0, true, false>(values_dofs, values_quad); - eval1.template values<1, true, false>(values_quad, values_quad); - break; - case 2: - eval0.template values<0, true, false>(values_dofs, values_quad); - break; - default: - Assert(false, ExcNotImplemented()); - } + if (dim == 2) + values_dofs_offsets[comp + 1] = + values_dofs_offsets[comp] + + 3 * dofs_per_direction[comp][(face_direction + 1) % dim]; + else + values_dofs_offsets[comp + 1] = + values_dofs_offsets[comp] + + 3 * dofs_per_direction[comp][(face_direction + 1) % dim] * + dofs_per_direction[comp][(face_direction + 2) % dim]; } - else if (evaluation_flag & EvaluationFlags::gradients) - { - switch (dim) - { - case 3: - // grad x - eval0.template gradients<0, true, false>(values_dofs, - scratch_data); - eval1.template values<1, true, false>(scratch_data, - gradients_quad); - - // grad y - eval0.template values<0, true, false>(values_dofs, - scratch_data); - eval1.template gradients<1, true, false>(scratch_data, - gradients_quad + - n_q_points); - - if (evaluation_flag & EvaluationFlags::values) - eval1.template values<1, true, false>(scratch_data, - values_quad); - // grad z - eval0.template values<0, true, false>(values_dofs + dofs_stride, - scratch_data); - eval1.template values<1, true, false>(scratch_data, - gradients_quad + - 2 * n_q_points); - - break; - case 2: - eval0.template values<0, true, false>(values_dofs + dofs_stride, - gradients_quad + - n_q_points); - eval0.template gradients<0, true, false>(values_dofs, - gradients_quad); - if ((evaluation_flag & EvaluationFlags::values)) - eval0.template values<0, true, false>(values_dofs, - values_quad); - break; - default: - AssertThrow(false, ExcNotImplemented()); - } - } + // Jacobians on faces are reordered to enable simple access with the + // regular evaluators; to get the RT Piola transform right, we need to + // pass through the values_dofs array in a permuted right order + std::array components; + for (unsigned int comp = 0; comp < dim; ++comp) + components[comp] = (face_direction + comp + 1) % dim; - if (evaluation_flag & EvaluationFlags::hessians) + for (const unsigned int comp : components) { - switch (dim) - { - case 3: - // grad xx - eval0.template hessians<0, true, false>(values_dofs, - scratch_data); - eval1.template values<1, true, false>(scratch_data, - hessians_quad); - - // grad yy - eval0.template values<0, true, false>(values_dofs, - scratch_data); - eval1.template hessians<1, true, false>(scratch_data, - hessians_quad + - n_q_points); - - // grad zz - eval0.template values<0, true, false>(values_dofs + - 2 * dofs_stride, - scratch_data); - eval1.template values<1, true, false>(scratch_data, - hessians_quad + - 2 * n_q_points); - - // grad xy - eval0.template gradients<0, true, false>(values_dofs, - scratch_data); - eval1.template gradients<1, true, false>(scratch_data, - hessians_quad + - 3 * n_q_points); - - // grad xz - eval0.template gradients<0, true, false>(values_dofs + - dofs_stride, - scratch_data); - eval1.template values<1, true, false>(scratch_data, - hessians_quad + - 4 * n_q_points); - - // grad yz - eval0.template values<0, true, false>(values_dofs + dofs_stride, - scratch_data); - eval1.template gradients<1, true, false>(scratch_data, - hessians_quad + - 5 * n_q_points); - - break; - case 2: - // grad xx - eval0.template hessians<0, true, false>(values_dofs, - hessians_quad); - // grad yy - eval0.template values<0, true, false>( - values_dofs + 2 * dofs_stride, hessians_quad + n_q_points); - // grad xy - eval0.template gradients<0, true, false>( - values_dofs + dofs_stride, hessians_quad + 2 * n_q_points); - break; - default: - AssertThrow(false, ExcNotImplemented()); - } - } - } + Number *values_dofs = values_dofs_in + values_dofs_offsets[comp]; - template - static inline void - evaluate_in_face_apply( - Number *values_dofs, - FEEvaluationData &fe_eval, - Number *scratch_data, - const EvaluationFlags::EvaluationFlags evaluation_flag, - const unsigned int face_direction, - const unsigned int subface_index, - std::integral_constant) - { - using EvalNormal = - EvaluatorTensorProductAnisotropic; - using EvalTangent = - EvaluatorTensorProductAnisotropic; - - using TempEval0 = typename std:: - conditional::type; - using TempEval1 = typename std:: - conditional::type; - using Eval0 = typename std:: - conditional::type; - using Eval1 = typename std:: - conditional::type; + std::array n_blocks{ + {dofs_per_direction[comp][(face_direction + 1) % dim], + (dim > 2 ? dofs_per_direction[comp][(face_direction + 2) % dim] : + 1)}}; - const auto &shape_info = fe_eval.get_shape_info(); - Eval0 eval0 = create_evaluator_tensor_product( - ((normal_dir == 0) ? shape_info.data[0] : shape_info.data[1]), - subface_index, - 0); - Eval1 eval1 = create_evaluator_tensor_product( - ((normal_dir == 1) ? shape_info.data[0] : shape_info.data[1]), - subface_index, - 1); - - constexpr std::size_t n_q_points = Utilities::pow(n_q_points_1d, dim - 1); - const std::size_t n_dofs_tangent = shape_info.dofs_per_component_on_face; - const std::size_t n_dofs_normal = - n_dofs_tangent - Utilities::pow(fe_degree, dim - 2); - const std::size_t dofs_stride = - (std::is_same_v) ? n_dofs_normal : n_dofs_tangent; - - static constexpr dealii::ndarray component_table = { - {{{1, 2, 0}}, {{2, 0, 1}}, {{0, 1, 2}}}}; - const unsigned int component = - (dim == 2 && normal_dir == 0 && face_direction == 1) ? - 0 : - component_table[face_direction][normal_dir]; - - // Initial offsets - values_dofs += - 3 * ((component == 0) ? - 0 : - ((component == 1) ? - ((face_direction == 0) ? n_dofs_normal : n_dofs_tangent) : - ((face_direction == 2) ? n_dofs_tangent + n_dofs_tangent : - n_dofs_normal + n_dofs_tangent))); - const unsigned int shift = (dim == 2) ? normal_dir / 2 : normal_dir; - Number *values_quad = fe_eval.begin_values() + n_q_points * shift; - Number *gradients_quad = - fe_eval.begin_gradients() + dim * n_q_points * shift; - Number *hessians_quad = - fe_eval.begin_hessians() + dim * (dim + 1) / 2 * n_q_points * shift; - - // Integration path - if ((evaluation_flag & EvaluationFlags::values) && - !(evaluation_flag & EvaluationFlags::gradients)) - { - switch (dim) + if constexpr (dim == 3) { - case 3: - eval1.template values<1, false, false>(values_quad, - values_quad); - eval0.template values<0, false, false>(values_quad, - values_dofs); - break; - case 2: - eval0.template values<0, false, false>(values_quad, - values_dofs); - break; - default: - Assert(false, ExcNotImplemented()); - } - } - else if (evaluation_flag & EvaluationFlags::gradients) - { - switch (dim) - { - case 3: - // grad z - eval1.template values<1, false, false>(gradients_quad + - 2 * n_q_points, - gradients_quad + - 2 * n_q_points); - eval0.template values<0, false, false>( - gradients_quad + 2 * n_q_points, values_dofs + dofs_stride); - - if (evaluation_flag & EvaluationFlags::values) - { - eval1.template values<1, false, false>(values_quad, - scratch_data); - eval1.template gradients<1, false, true>(gradients_quad + - n_q_points, - scratch_data); - } - else - eval1.template gradients<1, false, false>(gradients_quad + - n_q_points, - scratch_data); + EvaluatorTensorProduct + eval_g({}, + shape_data[0].shape_gradients_collocation_eo.data(), + {}); + if (!do_integrate) + { + // Evaluate in 3d + if (n_blocks[0] == n_rows_n) + { + EvalAniso::template work_normal<0, true, true, 1>( + shape_data[0], values_dofs, values_quad); + EvalAniso::template work_tangential<1, 0, true, true, 1>( + shape_data[1], values_quad, values_quad); - // grad y - eval0.template values<0, false, false>(scratch_data, - values_dofs); + if (evaluation_flag & EvaluationFlags::gradients) + { + EvalAniso::template work_normal<0, true, true, 1>( + shape_data[0], + values_dofs + n_blocks[0] * n_blocks[1], + scratch_data); + EvalAniso:: + template work_tangential<1, 0, true, true, dim>( + shape_data[1], scratch_data, gradients_quad + 2); + } + } + else if (n_blocks[1] == n_rows_n) + { + EvalAniso::template work_normal<1, true, true, 1>( + shape_data[0], values_dofs, values_quad); + EvalAniso::template work_tangential<0, 1, true, true, 1>( + shape_data[1], values_quad, values_quad); - // grad x - eval1.template values<1, false, false>(gradients_quad, - scratch_data); - eval0.template gradients<0, false, true>(scratch_data, - values_dofs); + if (evaluation_flag & EvaluationFlags::gradients) + { + EvalAniso::template work_normal<1, true, true, 1>( + shape_data[0], + values_dofs + n_blocks[0] * n_blocks[1], + scratch_data); + EvalAniso:: + template work_tangential<0, 1, true, true, dim>( + shape_data[1], scratch_data, gradients_quad + 2); + } + } + else + { + Eval eval(shape_data[1].shape_values_eo.data(), {}, {}); + eval.template values<0, true, false>(values_dofs, + values_quad); + eval.template values<1, true, false>(values_quad, + values_quad); + if (evaluation_flag & EvaluationFlags::gradients) + { + eval.template values<0, true, false>(values_dofs + + n_blocks[0] * + n_blocks[1], + scratch_data); + eval.template values<1, true, false, dim>( + scratch_data, gradients_quad + 2); + } + } + if (evaluation_flag & EvaluationFlags::gradients) + { + eval_g.template gradients<0, true, false, dim>( + values_quad, gradients_quad); + eval_g.template gradients<1, true, false, dim>( + values_quad, gradients_quad + 1); + } + } + else + { + // Integrate in 3d + if (evaluation_flag & EvaluationFlags::gradients) + { + if (evaluation_flag & EvaluationFlags::values) + eval_g.template gradients<0, false, true, dim>( + gradients_quad, values_quad); + else + eval_g.template gradients<0, false, false, dim>( + gradients_quad, values_quad); + eval_g.template gradients<1, false, true, dim>( + gradients_quad + 1, values_quad); + } + if (n_blocks[0] == n_rows_n) + { + EvalAniso::template work_tangential<1, 0, false, true, 1>( + shape_data[1], values_quad, values_quad); + EvalAniso::template work_normal<0, false, true, 1>( + shape_data[0], values_quad, values_dofs); - break; - case 2: - eval0.template values<0, false, false>( - gradients_quad + n_q_points, values_dofs + dofs_stride); - eval0.template gradients<0, false, false>(gradients_quad, - values_dofs); - if (evaluation_flag & EvaluationFlags::values) - eval0.template values<0, false, true>(values_quad, - values_dofs); - break; - default: - AssertThrow(false, ExcNotImplemented()); - } - } + if (evaluation_flag & EvaluationFlags::gradients) + { + EvalAniso:: + template work_tangential<1, 0, false, true, dim>( + shape_data[1], gradients_quad + 2, scratch_data); + EvalAniso::template work_normal<0, false, true, 1>( + shape_data[0], + scratch_data, + values_dofs + n_blocks[0] * n_blocks[1]); + } + } + else if (n_blocks[1] == n_rows_n) + { + EvalAniso::template work_tangential<0, 1, false, true, 1>( + shape_data[1], values_quad, values_quad); + EvalAniso::template work_normal<1, false, true, 1>( + shape_data[0], values_quad, values_dofs); - if (evaluation_flag & EvaluationFlags::hessians) - { - switch (dim) + if (evaluation_flag & EvaluationFlags::gradients) + { + EvalAniso:: + template work_tangential<0, 1, false, true, dim>( + shape_data[1], gradients_quad + 2, scratch_data); + EvalAniso::template work_normal<1, false, true, 1>( + shape_data[0], + scratch_data, + values_dofs + n_blocks[0] * n_blocks[1]); + } + } + else + { + Eval eval(shape_data[1].shape_values_eo.data(), {}, {}); + eval.template values<1, false, false>(values_quad, + values_quad); + eval.template values<0, false, false>(values_quad, + values_dofs); + if (evaluation_flag & EvaluationFlags::gradients) + { + eval.template values<1, false, false, dim>( + gradients_quad + 2, scratch_data); + eval.template values<0, false, false>( + scratch_data, + values_dofs + n_blocks[0] * n_blocks[1]); + } + } + } + } + else { - case 3: - // grad xx - eval1.template values<1, false, false>(hessians_quad, - scratch_data); - if ((evaluation_flag & - (EvaluationFlags::values | EvaluationFlags::gradients))) - eval0.template hessians<0, false, true>(scratch_data, - values_dofs); - else - eval0.template hessians<0, false, false>(scratch_data, - values_dofs); - - // grad yy - eval1.template hessians<1, false, false>(hessians_quad + - n_q_points, - scratch_data); - eval0.template values<0, false, true>(scratch_data, - values_dofs); - - // grad zz - eval1.template values<1, false, false>(hessians_quad + - 2 * n_q_points, - scratch_data); - eval0.template values<0, false, false>(scratch_data, - values_dofs + - 2 * dofs_stride); - - // grad xy - eval1.template gradients<1, false, false>(hessians_quad + - 3 * n_q_points, - scratch_data); - eval0.template gradients<0, false, true>(scratch_data, - values_dofs); - - // grad xz - eval1.template values<1, false, false>(hessians_quad + - 4 * n_q_points, - scratch_data); - if ((evaluation_flag & EvaluationFlags::gradients)) - eval0.template gradients<0, false, true>(scratch_data, - values_dofs + - dofs_stride); - else - eval0.template gradients<0, false, false>(scratch_data, - values_dofs + - dofs_stride); - - // grad yz - eval1.template gradients<1, false, false>(hessians_quad + - 5 * n_q_points, - scratch_data); - eval0.template values<0, false, true>(scratch_data, - values_dofs + - dofs_stride); - - break; - case 2: - // grad xx - if (evaluation_flag & - (EvaluationFlags::values | EvaluationFlags::gradients)) - eval0.template hessians<0, false, true>(hessians_quad, - values_dofs); - else - eval0.template hessians<0, false, false>(hessians_quad, - values_dofs); - - // grad yy - eval0.template values<0, false, false>( - hessians_quad + n_q_points, values_dofs + 2 * dofs_stride); - // grad xy - if ((evaluation_flag & EvaluationFlags::gradients)) - eval0.template gradients<0, false, true>( - hessians_quad + 2 * n_q_points, values_dofs + dofs_stride); - else - eval0.template gradients<0, false, false>( - hessians_quad + 2 * n_q_points, values_dofs + dofs_stride); - break; - default: - AssertThrow(false, ExcNotImplemented()); + using EvalN = EvaluatorTensorProduct; + if (!do_integrate) + { + // Evaluate in 2d + if (n_blocks[0] == n_rows_n) + { + EvalN eval(shape_data[0].shape_values_eo, + shape_data[0].shape_gradients_eo, + {}); + eval.template values<0, true, false>(values_dofs, + values_quad); + if (evaluation_flag & EvaluationFlags::gradients) + { + eval.template gradients<0, true, false, dim>( + values_dofs, gradients_quad); + eval.template values<0, true, false, dim>( + values_dofs + n_rows_n, gradients_quad + 1); + } + } + else + { + Eval eval(shape_data[1].shape_values_eo, + shape_data[1].shape_gradients_eo, + {}); + eval.template values<0, true, false>(values_dofs, + values_quad); + if (evaluation_flag & EvaluationFlags::gradients) + { + eval.template gradients<0, true, false, dim>( + values_dofs, gradients_quad); + eval.template values<0, true, false, dim>( + values_dofs + n_rows_t, gradients_quad + 1); + } + } + } + else + { + // Integrate in 2d + if (n_blocks[0] == n_rows_n) + { + EvalN eval(shape_data[0].shape_values_eo, + shape_data[0].shape_gradients_eo, + {}); + if (evaluation_flag & EvaluationFlags::values) + eval.template values<0, false, false>(values_quad, + values_dofs); + if (evaluation_flag & EvaluationFlags::gradients) + { + if (evaluation_flag & EvaluationFlags::values) + eval.template gradients<0, false, true, dim>( + gradients_quad, values_dofs); + else + eval.template gradients<0, false, false, dim>( + gradients_quad, values_dofs); + eval.template values<0, false, false, dim>( + gradients_quad + 1, values_dofs + n_rows_n); + } + } + else + { + Eval eval(shape_data[1].shape_values_eo, + shape_data[1].shape_gradients_eo, + {}); + if (evaluation_flag & EvaluationFlags::values) + eval.template values<0, false, false>(values_quad, + values_dofs); + if (evaluation_flag & EvaluationFlags::gradients) + { + if (evaluation_flag & EvaluationFlags::values) + eval.template gradients<0, false, true, dim>( + gradients_quad, values_dofs); + else + eval.template gradients<0, false, false, dim>( + gradients_quad, values_dofs); + eval.template values<0, false, false, dim>( + gradients_quad + 1, values_dofs + n_rows_t); + } + } + } } + values_quad += Utilities::pow(n_q_points_1d, dim - 1); + gradients_quad += dim * Utilities::pow(n_q_points_1d, dim - 1); } } }; + template struct FEFaceNormalEvaluationImpl { @@ -3404,7 +3203,7 @@ namespace internal fe_degree == -1, ExcInternalError()); if (shape_info.element_type == MatrixFreeFunctions::tensor_raviart_thomas) - interpolate_generic_raviart_thomas( + interpolate_raviart_thomas( n_components, input, output, flags, face_no, shape_info); else interpolate_generic( @@ -3548,21 +3347,12 @@ namespace internal } } - template - static EvalType - create_evaluator_tensor_product( - const MatrixFreeFunctions::UnivariateShapeData &data, - const unsigned int face_no) - { - return EvalType(data.shape_data_on_face[face_no % 2], {}, {}); - } - template static void - interpolate_generic_raviart_thomas( + interpolate_raviart_thomas( const unsigned int n_components, const Number *input, Number *output, @@ -3718,30 +3508,28 @@ namespace internal else if (face_direction == face_no / 2) { // Only increase max_derivative - interpolate_generic_raviart_thomas( + interpolate_raviart_thomas( n_components, input, output, flag, face_no, shape_info); } else if (face_direction < dim) { if (increase_max_der) { - interpolate_generic_raviart_thomas< - do_evaluate, - add_into_output, - std::min(face_direction + 1, dim - 1), - std::min(max_derivative + 1, 2)>( + interpolate_raviart_thomas( n_components, input, output, flag, face_no, shape_info); } else { - interpolate_generic_raviart_thomas( + interpolate_raviart_thomas( n_components, input, output, flag, face_no, shape_info); } } @@ -4130,21 +3918,21 @@ namespace internal constexpr unsigned int n_q_points_1d_actual = fe_degree > -1 ? n_q_points_1d : 0; - if (fe_degree >= 1 && - shape_info.element_type == MatrixFreeFunctions::tensor_raviart_thomas) + if (shape_info.element_type == MatrixFreeFunctions::tensor_raviart_thomas) { FEFaceEvaluationImplRaviartThomas:: template evaluate_or_integrate_in_face( evaluation_flag, + fe_eval.get_shape_info().data, temp, - fe_eval, + fe_eval.begin_values(), + fe_eval.begin_gradients(), scratch_data, subface_index, - fe_eval.get_face_no()); + fe_eval.get_face_no() / 2); } else if (fe_degree > -1 && subface_index >= GeometryInfo::max_children_per_cell && @@ -4378,20 +4166,21 @@ namespace internal fe_degree > -1 ? n_q_points_1d : 0; const unsigned int subface_index = fe_eval.get_subface_index(); - if (fe_degree >= 1 && - shape_info.element_type == MatrixFreeFunctions::tensor_raviart_thomas) + if (shape_info.element_type == MatrixFreeFunctions::tensor_raviart_thomas) { FEFaceEvaluationImplRaviartThomas:: - template evaluate_or_integrate_in_face(integration_flag, - temp, - fe_eval, - scratch_data, - subface_index, - fe_eval.get_face_no()); + template evaluate_or_integrate_in_face( + integration_flag, + fe_eval.get_shape_info().data, + temp, + fe_eval.begin_values(), + fe_eval.begin_gradients(), + scratch_data, + subface_index, + fe_eval.get_face_no() / 2); } else if (fe_degree > -1 && fe_eval.get_subface_index() >= diff --git a/include/deal.II/matrix_free/tensor_product_kernels.h b/include/deal.II/matrix_free/tensor_product_kernels.h index c9717aab71..4c397afd37 100644 --- a/include/deal.II/matrix_free/tensor_product_kernels.h +++ b/include/deal.II/matrix_free/tensor_product_kernels.h @@ -64,11 +64,7 @@ namespace internal * coefficient arrays. See the documentation of the EvaluatorTensorProduct * specialization for more information. */ - evaluate_symmetric_hierarchical, - /** - * Raviart-Thomas elements with anisotropic polynomials. - */ - evaluate_raviart_thomas + evaluate_symmetric_hierarchical }; @@ -1599,10 +1595,10 @@ namespace internal * * @tparam n_rows_template The number of entries within the interpolation, * typically equal to the polynomial degree plus one, if known - * at compile time, otherwise n_rows_runtime is used + * at compile time, otherwise n_rows_runtime is used. * @tparam stride_template The stride between successive entries in the * one-dimensional operation of sum factorization, if known at - * compile time, otherwise stride_runtime is used + * compile time, otherwise stride_runtime is used. * @tparam contract_onto_face If true, the input vector is of size n_rows^dim * and interpolation into n_rows^(dim-1) points * is performed. This is a typical scenario in @@ -1611,22 +1607,26 @@ namespace internal * into the n_rows^dim points of the higher- * dimensional data array. Derivatives in the * case contract_onto_face==false are summed - * together + * together. * @tparam add If true, the result is added to the output vector, else - * the computed values overwrite the content in the output + * the computed values overwrite the content in the output. * @tparam max_derivative Sets the number of derivatives that should be * computed. 0 means only values, 1 means values and first * derivatives, 2 second derivates. Note that all the * derivatives access the data in @p shape_values passed to - * the constructor of the class + * the constructor of the class. * * @param shape_values address of the interpolation matrix * @param n_blocks Number of interpolation layer used along the two other * dimensions tangential to the interpolation direction * @param steps Increments in the input array from one step to the next, * varied in conjunction with the @p stride variable. - * @param input Address of the input data vector - * @param output Address of the output data vector + * @param input Address of the input data vector. + * @param output Address of the output data vector. + * @param n_rows_runtime Alternative number of rows to be used if the + * variable @p n_rows_template is 0, enabling a run-time path. + * @param stride_runtime Alternative number for the stride to be used if the + * variable @p n_rows_template is 0. */ template - struct EvaluatorTensorProductAnisotropic - {}; - - - - /** - * Internal evaluator for shape function in 2d and 3d using the - * tensor product form of the anisotropic basis functions of the - * raviart-thomas element, with degree k+1 in normal direction and - * k in tangential direction. - * - * @tparam dim Space dimension in which this class is applied - * @tparam n_rows Number of rows in the transformation matrix, which corresponds - * to the number of 1d shape functions in the usual tensor - * contraction setting - * @tparam n_columns Number of columns in the transformation matrix, which - * corresponds to the number of 1d shape functions in the - * usual tensor contraction setting - * @tparam Number Abstract number type for input and output arrays - * @tparam Number2 Abstract number type for coefficient arrays (defaults to - * same type as the input/output arrays); must implement - * operator* with Number and produce Number as an output to - * be a valid type - */ - template - struct EvaluatorTensorProductAnisotropic - { - static constexpr unsigned int n_rows_of_product = - numbers::invalid_unsigned_int; - static constexpr unsigned int n_columns_of_product = - numbers::invalid_unsigned_int; - - /** - * Empty constructor. Does nothing. Be careful when using 'values' and - * related methods because they need to be filled with the other pointer - */ - EvaluatorTensorProductAnisotropic() - : shape_values(nullptr) - , shape_gradients(nullptr) - , shape_hessians(nullptr) - {} - - /** - * Constructor, taking the data from ShapeInfo - */ - EvaluatorTensorProductAnisotropic( - const AlignedVector &shape_values, - const AlignedVector &shape_gradients, - const AlignedVector &shape_hessians, - const unsigned int dummy1 = 0, - const unsigned int dummy2 = 0) - : shape_values(shape_values.begin()) - , shape_gradients(shape_gradients.begin()) - , shape_hessians(shape_hessians.begin()) - { - // We can enter this function either for the apply() path that has - // n_rows * n_columns entries or for the apply_face() path that only has - // n_rows * 3 entries in the array. Since we cannot decide about the use - // we must allow for both here. - Assert(shape_values.empty() || - shape_values.size() == n_rows * n_columns || - shape_values.size() == 3 * n_rows, - ExcDimensionMismatch(shape_values.size(), n_rows * n_columns)); - Assert(shape_gradients.empty() || - shape_gradients.size() == n_rows * n_columns, - ExcDimensionMismatch(shape_gradients.size(), n_rows * n_columns)); - Assert(shape_hessians.empty() || - shape_hessians.size() == n_rows * n_columns, - ExcDimensionMismatch(shape_hessians.size(), n_rows * n_columns)); - (void)dummy1; - (void)dummy2; - } - - template - void - values(const Number in[], Number out[]) const - { - apply(shape_values, in, out); - } - - template - void - gradients(const Number in[], Number out[]) const - { - apply(shape_gradients, in, out); - } - - template - void - hessians(const Number in[], Number out[]) const - { - apply(shape_hessians, in, out); - } - - /** - * This function applies the tensor product kernel, corresponding to a - * multiplication of 1d stripes, along the given @p direction of the tensor - * data in the input array. This function allows the @p in and @p out - * arrays to alias for the case n_rows == n_columns, i.e., it is safe to - * perform the contraction in place where @p in and @p out point to the - * same address. For the case n_rows != n_columns, the output is only - * correct if @p one_line is set to true. - * - * @tparam direction Direction that is evaluated - * @tparam contract_over_rows If true, the tensor contraction sums - * over the rows in the given @p shape_data - * array, otherwise it sums over the columns - * @tparam add If true, the result is added to the output vector, else - * the computed values overwrite the content in the output - * @tparam normal_dir Indicates the direction of the continuous component of the - * RT space in terms of the normal onto the face, e.g - * 0 if the is in x-direction, 1 if in y-direction - * etc. - * @tparam one_line If true, the kernel is only applied along a single 1d - * stripe within a dim-dimensional tensor, not the full - * n_rows^dim points as in the @p false case. - * - * @param shape_data Transformation matrix with @p n_rows rows and - * @p n_columns columns, stored in row-major format - * @param in Pointer to the start of the input data vector - * @param out Pointer to the start of the output data vector - */ - template - static void - apply(const Number2 *DEAL_II_RESTRICT shape_data, - const Number *in, - Number *out); - - private: - const Number2 *shape_values; - const Number2 *shape_gradients; - const Number2 *shape_hessians; - }; - - - - template - template - inline void - EvaluatorTensorProductAnisotropic< - evaluate_raviart_thomas, - dim, - n_rows, - n_columns, - normal_dir, - Number, - Number2>::apply(const Number2 *DEAL_II_RESTRICT shape_data, - const Number *in, - Number *out) - { - static_assert(one_line == false || direction == dim - 1, - "Single-line evaluation only works for direction=dim-1."); - Assert(shape_data != nullptr, - ExcMessage( - "The given array shape_data must not be the null pointer!")); - Assert(dim == direction + 1 || one_line == true || n_rows == n_columns || - in != out, - ExcMessage("In-place operation only supported for " - "n_rows==n_columns or single-line interpolation")); - AssertIndexRange(direction, dim); - constexpr int mm = contract_over_rows ? n_rows : n_columns, - nn = contract_over_rows ? n_columns : n_rows; - - constexpr int stride = Utilities::pow(n_columns, direction); - constexpr int n_blocks1 = one_line ? 1 : stride; - - // The number of blocks depend on both direction and dimension. - constexpr int n_blocks2 = - (dim - direction - 1 == 0) ? - 1 : - ((direction == normal_dir) ? - Utilities::pow((n_rows - 1), - (direction >= dim) ? 0 : dim - direction - 1) : - (((direction < normal_dir) ? (n_rows + 1) : n_rows) * - ((dim - direction == 3) ? n_rows : 1))); - - for (int i2 = 0; i2 < n_blocks2; ++i2) - { - for (int i1 = 0; i1 < n_blocks1; ++i1) - { - apply_matrix_vector_product(shape_data, in, out); - - if (one_line == false) - { - ++in; - ++out; - } - } - if (one_line == false) - { - in += stride * (mm - 1); - out += stride * (nn - 1); - } - } - } - - - /** * Struct to avoid using Tensor<1, dim, Point> in * evaluate_tensor_product_value_and_gradient because a Point cannot be used