From: David Wells Date: Fri, 17 Jul 2015 14:48:54 +0000 (-0400) Subject: Implement dimension-specific real to unit maps. X-Git-Tag: v8.4.0-rc2~667^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=19cfcea360f357457e6b9f01392edde7210d17f3;p=dealii.git Implement dimension-specific real to unit maps. The 2D version uses an exact formula and is about 35-45x faster than the current version. The exact version does not allocate memory and falls back to the Newton algorithm if it fails or the point lies outside the cell. --- diff --git a/source/fe/mapping_q1.cc b/source/fe/mapping_q1.cc index 210f01965f..58e88dc443 100644 --- a/source/fe/mapping_q1.cc +++ b/source/fe/mapping_q1.cc @@ -94,6 +94,126 @@ namespace internal { namespace MappingQ1 { + // These are left as templates on the spatial dimension (even though dim + // == spacedim must be true for them to make sense) because templates are + // expanded before the compiler eliminates code due to the 'if (dim == + // spacedim)' statement (see the body of the general + // transform_real_to_unit_cell). + template + Point<1> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<1>::vertices_per_cell> &vertices, + const Point &p) + { + Assert(spacedim == 1, ExcInternalError()); + return Point<1>((p[0] - vertices[0](0))/(vertices[1](0) - vertices[0](0))); + } + + + + template + Point<2> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<2>::vertices_per_cell> &vertices, + const Point &p) + { + Assert(spacedim == 2, ExcInternalError()); + const double x = p(0); + const double y = p(1); + + const double x0 = vertices[0](0); + const double x1 = vertices[1](0); + const double x2 = vertices[2](0); + const double x3 = vertices[3](0); + + const double y0 = vertices[0](1); + const double y1 = vertices[1](1); + const double y2 = vertices[2](1); + const double y3 = vertices[3](1); + + const double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); + const double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 + - (x - x1)*y2 + (x - x0)*y3; + const double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; + + const double discriminant = b*b - 4*a*c; + // fast exit if the point is not in the cell (this is the only case + // where the discriminant is negative) + if (discriminant < 0.0) + { + return Point<2>(2, 2); + } + + double eta1; + double eta2; + // special case #1: if a is zero, then use the linear formula + if (a == 0.0 && b != 0.0) + { + eta1 = -c/b; + eta2 = -c/b; + } + // special case #2: if c is very small: + else if (std::abs(c/b) < 1e-12) + { + eta1 = (-b - std::sqrt(discriminant)) / (2*a); + eta2 = (-b + std::sqrt(discriminant)) / (2*a); + } + // finally, use the numerically stable version of the quadratic formula: + else + { + eta1 = 2*c / (-b - std::sqrt(discriminant)); + eta2 = 2*c / (-b + std::sqrt(discriminant)); + } + // pick the one closer to the center of the cell. + const double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; + + /* + * There are two ways to compute xi from eta, but either one may have a + * zero denominator. + */ + const double subexpr0 = -eta*x2 + x0*(eta - 1); + const double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; + const double max_x = std::max(std::max(std::abs(x0), std::abs(x1)), + std::max(std::abs(x2), std::abs(x3))); + + if (std::abs(xi_denominator0) > 1e-10*max_x) + { + const double xi = (x + subexpr0)/xi_denominator0; + return Point<2>(xi, eta); + } + else + { + const double max_y = std::max(std::max(std::abs(y0), std::abs(y1)), + std::max(std::abs(y2), std::abs(y3))); + const double subexpr1 = -eta*y2 + y0*(eta - 1); + const double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; + if (std::abs(xi_denominator1) > 1e-10*max_y) + { + const double xi = (subexpr1 + y)/xi_denominator1; + return Point<2>(xi, eta); + } + else // give up and try Newton iteration + { + return Point<2>(2, 2); + } + } + } + + + + template + Point<3> + transform_real_to_unit_cell + (const std_cxx11::array, GeometryInfo<3>::vertices_per_cell> &/*vertices*/, + const Point &/*p*/) + { + // It should not be possible to get here + Assert(false, ExcInternalError()); + return Point<3>(); + } + + + template void compute_shapes_virtual (const unsigned int n_shape_functions, @@ -1643,6 +1763,40 @@ MappingQ1:: transform_real_to_unit_cell (const typename Triangulation::cell_iterator &cell, const Point &p) const { + // Use the exact formula if available + if (dim == spacedim && (dim == 1 || dim == 2)) + { + // The dimension-dependent algorithms are much faster (about 25-45x in 2D) + // but fail most of the time when the given point (p) is not in the + // cell. The dimension-independent Newton algorithm given below is + // slower, but more robust (though it still sometimes fails). + const std_cxx11::array, GeometryInfo::vertices_per_cell> + vertices = this->get_vertices(cell); + // These internal routines do not throw exceptions when the point does + // not lie in the cell because manually checking (see the tolerances + // before the return statements) is about 10% faster than a throw/catch. + Point point = internal::MappingQ1::transform_real_to_unit_cell(vertices, p); + + if (dim == 1) + { + // formula not subject to any issues + return point; + } + else if (dim == 2) + { + // formula not guaranteed to work for points outside of the cell + const double eps = 1e-15; + if (-eps <= point(1) && point(1) <= 1 + eps && + -eps <= point(0) && point(0) <= 1 + eps) + { + return point; + } + } + else + { + Assert(false, ExcInternalError()); + } + } // Find the initial value for the // Newton iteration by a normal projection // to the least square plane determined by