From: Wolfgang Bangerth Date: Tue, 29 Sep 2020 01:36:05 +0000 (-0600) Subject: Rename QTrapez to QTrapezoid in examples/. X-Git-Tag: v9.3.0-rc1~1053^2~5 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=1a859940abdaafcf5f594de041e08d572829472b;p=dealii.git Rename QTrapez to QTrapezoid in examples/. --- diff --git a/examples/step-14/step-14.cc b/examples/step-14/step-14.cc index 6e812744e9..9e612bd39a 100644 --- a/examples/step-14/step-14.cc +++ b/examples/step-14/step-14.cc @@ -206,7 +206,7 @@ namespace Step14 // ...then have some objects of which the meaning will become clear // below... - QTrapez vertex_quadrature; + QTrapezoid vertex_quadrature; FEValues fe_values(dof_handler.get_fe(), vertex_quadrature, update_gradients | update_quadrature_points); diff --git a/examples/step-18/step-18.cc b/examples/step-18/step-18.cc index d6b937b936..327e1967eb 100644 --- a/examples/step-18/step-18.cc +++ b/examples/step-18/step-18.cc @@ -1463,7 +1463,7 @@ namespace Step18 // In this context, it is instructive to point out what a more general way // would be. For general finite elements, the way to go would be to take a // quadrature formula with the quadrature points in the vertices of a - // cell. The QTrapez formula for the trapezoidal rule does + // cell. The QTrapezoid formula for the trapezoidal rule does // exactly this. With this quadrature formula, we would then initialize an // FEValues object in each cell, and use the // FEValues::get_function_values function to obtain the values diff --git a/examples/step-19/step-19.cc b/examples/step-19/step-19.cc index c882662750..48ad730f16 100644 --- a/examples/step-19/step-19.cc +++ b/examples/step-19/step-19.cc @@ -826,8 +826,8 @@ namespace Step19 // discussion in the introduction. else { - const QTrapez vertex_quadrature; - FEValues fe_values(fe, vertex_quadrature, update_gradients); + const QTrapezoid vertex_quadrature; + FEValues fe_values(fe, vertex_quadrature, update_gradients); std::vector> field_gradients(vertex_quadrature.size()); diff --git a/examples/step-20/step-20.cc b/examples/step-20/step-20.cc index c4e64df7a2..e8bbd2faca 100644 --- a/examples/step-20/step-20.cc +++ b/examples/step-20/step-20.cc @@ -716,7 +716,7 @@ namespace Step20 // points for integration. To avoid this problem, we simply use a // trapezoidal rule and iterate it degree+2 times in each // coordinate direction (again as explained in step-7): - QTrapez<1> q_trapez; + QTrapezoid<1> q_trapez; QIterated quadrature(q_trapez, degree + 2); // With this, we can then let the library compute the errors and output diff --git a/examples/step-31/step-31.cc b/examples/step-31/step-31.cc index 27fe2bc106..c029702952 100644 --- a/examples/step-31/step-31.cc +++ b/examples/step-31/step-31.cc @@ -582,7 +582,7 @@ namespace Step31 // on each cell. To this end, recall that if we had a single $Q_1$ field // (rather than the vector-valued field of higher order) then the maximum // would be attained at a vertex of the mesh. In other words, we should use - // the QTrapez class that has quadrature points only at the vertices of + // the QTrapezoid class that has quadrature points only at the vertices of // cells. // // For higher order shape functions, the situation is more complicated: the @@ -600,15 +600,15 @@ namespace Step31 // FiniteElement::get_unit_support_points() function, reduce the output to a // unique set of points to avoid duplicate function evaluations, and create // a Quadrature object using these points. Another option, chosen here, is - // to use the QTrapez class and combine it with the QIterated class that - // repeats the QTrapez formula on a number of sub-cells in each coordinate + // to use the QTrapezoid class and combine it with the QIterated class that + // repeats the QTrapezoid formula on a number of sub-cells in each coordinate // direction. To cover all support points, we need to iterate it // stokes_degree+1 times since this is the polynomial degree of // the Stokes element in use: template double BoussinesqFlowProblem::get_maximal_velocity() const { - const QIterated quadrature_formula(QTrapez<1>(), stokes_degree + 1); + const QIterated quadrature_formula(QTrapezoid<1>(), stokes_degree + 1); const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values(stokes_fe, quadrature_formula, update_values); @@ -661,7 +661,8 @@ namespace Step31 std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range() const { - const QIterated quadrature_formula(QTrapez<1>(), temperature_degree); + const QIterated quadrature_formula(QTrapezoid<1>(), + temperature_degree); const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values(temperature_fe, quadrature_formula, update_values); diff --git a/examples/step-32/step-32.cc b/examples/step-32/step-32.cc index f74c6f741f..4cfac9d552 100644 --- a/examples/step-32/step-32.cc +++ b/examples/step-32/step-32.cc @@ -1264,7 +1264,7 @@ namespace Step32 template double BoussinesqFlowProblem::get_maximal_velocity() const { - const QIterated quadrature_formula(QTrapez<1>(), + const QIterated quadrature_formula(QTrapezoid<1>(), parameters.stokes_velocity_degree); const unsigned int n_q_points = quadrature_formula.size(); @@ -1306,7 +1306,7 @@ namespace Step32 template double BoussinesqFlowProblem::get_cfl_number() const { - const QIterated quadrature_formula(QTrapez<1>(), + const QIterated quadrature_formula(QTrapezoid<1>(), parameters.stokes_velocity_degree); const unsigned int n_q_points = quadrature_formula.size(); @@ -1461,7 +1461,7 @@ namespace Step32 std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range() const { - const QIterated quadrature_formula(QTrapez<1>(), + const QIterated quadrature_formula(QTrapezoid<1>(), parameters.temperature_degree); const unsigned int n_q_points = quadrature_formula.size(); diff --git a/examples/step-41/step-41.cc b/examples/step-41/step-41.cc index 02a5cfc1f4..b54dc855c9 100644 --- a/examples/step-41/step-41.cc +++ b/examples/step-41/step-41.cc @@ -345,8 +345,8 @@ namespace Step41 { Assert(fe.degree == 1, ExcNotImplemented()); - const QTrapez quadrature_formula; - FEValues fe_values(fe, + const QTrapezoid quadrature_formula; + FEValues fe_values(fe, quadrature_formula, update_values | update_JxW_values); diff --git a/examples/step-7/step-7.cc b/examples/step-7/step-7.cc index 44245daadc..0005d83e80 100644 --- a/examples/step-7/step-7.cc +++ b/examples/step-7/step-7.cc @@ -897,7 +897,7 @@ namespace Step7 // error on each cell. Finally, we compute the global L infinity error // from the L infinity errors on each cell with a call to // VectorTools::compute_global_error. - const QTrapez<1> q_trapez; + const QTrapezoid<1> q_trapez; const QIterated q_iterated(q_trapez, fe->degree * 2 + 1); VectorTools::integrate_difference(dof_handler, solution,