From: bonito Date: Wed, 5 Jan 2011 21:15:13 +0000 (+0000) Subject: git-svn-id: https://svn.dealii.org/trunk@23134 0785d39b-7218-0410-832d-ea1e28bc413d X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=1eed5f2389416b03f0c19d0c8182387cd1b999bc;p=dealii-svn.git git-svn-id: https://svn.dealii.org/trunk@23134 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-38/doc/intro.dox b/deal.II/examples/step-38/doc/intro.dox index de71fcf546..4fb138d76b 100644 --- a/deal.II/examples/step-38/doc/intro.dox +++ b/deal.II/examples/step-38/doc/intro.dox @@ -190,8 +190,8 @@ We produce one test case for a 2d problem and another one for 3d: In the program, we will also compute the $H^1$ seminorm error of the solution. Since the solution function and its numerical approximation are only defined on the manifold, the obvious definition of this error functional is -$| e |_{H^1} - = | \nabla_\Gamma e |_{L_2} +$| e |_{H^1(\Gamma)} + = | \nabla_\Gamma e |_{L_2(\Gamma)} = \left( \int_\Gamma | \left[\mathbf 1 - \mathbf n \otimes \mathbf n\right]\nabla (u-u_h) |^2 \right)^{1/2}$. This requires us to provide the tangential gradient $\left[\mathbf 1 - \mathbf n \otimes \mathbf