From: Wolfgang Bangerth Date: Mon, 27 Oct 2008 03:17:16 +0000 (+0000) Subject: Comment on two more functions. Change choice of quadrature points both in step-31... X-Git-Tag: v8.0.0~8478 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=269c4e0c103b275c760f5588cfb9c21ae7152d1e;p=dealii.git Comment on two more functions. Change choice of quadrature points both in step-31 and -32. git-svn-id: https://svn.dealii.org/trunk@17345 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index 866989b38b..d98db76105 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -712,8 +712,54 @@ BoussinesqFlowProblem::BoussinesqFlowProblem () // // The only point worth thinking about a bit // is how to choose the quadrature points we - // use here. -//TODO finish... + // use here. Since the goal of this function + // is to find the maximal velocity over a + // domain by looking at quadrature points on + // each cell. So we should ask how we should + // best choose these quadrature points on + // each cell. To this end, recall that if we + // had a single $Q_1$ field (rather than the + // vector-valued field of higher order) then + // the maximum would be attained at a vertex + // of the mesh. In other words, we should use + // the QTrapez class that has quadrature + // points only at the vertices of cells. + // + // For higher order shape functions, the + // situation is more complicated: the maxima + // and minima may be attained at points + // between the support points of shape + // functions (for the usual $Q_p$ elements + // the support points are the equidistant + // Lagrange interpolation points); + // furthermore, since we are looking for the + // maximum magnitude of a vector-valued + // quantity, we can even less say with + // certainty where the set of potential + // maximal points are. Nevertheless, + // intuitively if not provably, the Lagrange + // interpolation points appear to be a better + // choice than the Gauss points. + // + // There are now different methods to produce + // a quadrature formula with quadrature + // points equal to the interpolation points + // of the finite element. One option would be + // to use the + // FiniteElement::get_unit_support_points() + // function, reduce the output to a unique + // set of points to avoid duplicate function + // evaluations, and create a Quadrature + // object using these points. Another option, + // chosen here, is to use the QTrapez class + // and combine it with the QIterated class + // that repeats the QTrapez formula on a + // number of sub-cells in each coordinate + // direction. To cover all support points, we + // need to iterate it + // stokes_degree+1 times since + // this is the polynomial degree of the + // Stokes element in use: template double BoussinesqFlowProblem::get_maximal_velocity () const { @@ -766,7 +812,7 @@ double BoussinesqFlowProblem::get_maximal_velocity () const // $\left(1+\frac{k_n}{k_{n-1}} // \right)T^{n-1} + \frac{k_n}{k_{n-1}} // T^{n-2}$. The way to compute it is to loop - // over all quadrature points and updated the + // over all quadrature points and update the // maximum and minimum value if the current // value is bigger/smaller than the previous // one. We initialize the variables that @@ -799,12 +845,18 @@ double BoussinesqFlowProblem::get_maximal_velocity () const // step, $T^{k-2}$ is not yet available of // course. In that case, we can only use // $T^{k-1}$ which we have from the initial - // temperature. + // temperature. As quadrature points, we use + // the same choice as in the previous + // function though with the difference that + // now the number of repetitions is + // determined by the polynomial degree of the + // temperature field. template std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range () const { - const QGauss quadrature_formula(temperature_degree+2); + const QIterated quadrature_formula (QTrapez<1>(), + temperature_degree); const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values (temperature_fe, quadrature_formula, diff --git a/deal.II/examples/step-32/step-32.cc b/deal.II/examples/step-32/step-32.cc index 562781e067..3d60697308 100644 --- a/deal.II/examples/step-32/step-32.cc +++ b/deal.II/examples/step-32/step-32.cc @@ -379,7 +379,8 @@ BoussinesqFlowProblem::BoussinesqFlowProblem (Utilities::TrilinosTools &tri template double BoussinesqFlowProblem::get_maximal_velocity () const { - const QGauss quadrature_formula(stokes_degree+2); + const QIterated quadrature_formula (QTrapez<1>(), + stokes_degree+1); const unsigned int n_q_points = quadrature_formula.size(); BlockVector localized_stokes_solution (stokes_solution); @@ -419,7 +420,8 @@ template std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range () const { - const QGauss quadrature_formula(temperature_degree+2); + const QIterated quadrature_formula (QTrapez<1>(), + temperature_degree); const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values (temperature_fe, quadrature_formula,