From: Martin Kronbichler Date: Sat, 30 May 2009 12:30:14 +0000 (+0000) Subject: Computation of embedding matrices can be done without mmult. X-Git-Tag: v8.0.0~7647 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=27792812668493a05ab4f8ef6b1309133ce08517;p=dealii.git Computation of embedding matrices can be done without mmult. git-svn-id: https://svn.dealii.org/trunk@18890 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/deal.II/source/fe/fe_q.cc b/deal.II/deal.II/source/fe/fe_q.cc index 05fc1f6074..efac63e855 100644 --- a/deal.II/deal.II/source/fe/fe_q.cc +++ b/deal.II/deal.II/source/fe/fe_q.cc @@ -1517,23 +1517,37 @@ template void FE_Q::initialize_embedding () { - // compute the interpolation - // matrices in much the same way as - // we do for the constraints. it's - // actually simpler here, since we - // don't have this weird - // renumbering stuff going on + // compute the interpolation matrices + // in much the same way as we do for + // the constraints. it's actually + // simpler here, since we don't have + // this weird renumbering stuff going + // on. The trick is again that we the + // interpolation matrix is formed by + // a permutation of the indices of + // the cell matrix. FullMatrix cell_interpolation (this->dofs_per_cell, this->dofs_per_cell); - FullMatrix subcell_interpolation (this->dofs_per_cell, - this->dofs_per_cell); const std::vector &index_map= this->poly_space.get_numbering(); - const double zero_threshold = 2e-13*this->degree*this->degree*dim; + const double eps = 2e-13*this->degree*this->degree*dim; + unsigned n_ones = 0; // precompute subcell interpolation - // matrix + // information, which will give us a + // vector of permutations. it + // actually is a matrix (the inverse + // of which we'd need to multiply the + // celL interpolation matrix with), + // but since we use Lagrangian basis + // functions here, we know that each + // basis function will just one at + // one node and zero on all the + // others. this makes this process + // much cheaper. + std::vector subcell_permutations (this->dofs_per_cell, + deal_II_numbers::invalid_unsigned_int); for (unsigned int i=0; idofs_per_cell; ++i) for (unsigned int j=0; jdofs_per_cell; ++j) { @@ -1543,47 +1557,34 @@ FE_Q::initialize_embedding () const double subcell_value = this->poly_space.compute_value (i, p_subcell); - // cut off values that are - // too small. note that we - // have here Lagrange - // interpolation functions, - // so they should be zero - // at almost all points, - // and one at the others, - // at least on the - // subcells. so set them to - // their exact values - // - // the actual cut-off value - // is somewhat fuzzy, but - // it works for - // 2e-13*degree^2*dim (see - // above), which is kind of - // reasonable given that we - // compute the values of - // the polynomials via an - // degree-step recursion - // and then multiply the - // 1d-values. this gives us - // a linear growth in - // degree*dim, times a - // small constant. - if (std::fabs(subcell_value) < zero_threshold) - subcell_interpolation(j, i) = 0.; - else if (std::fabs(subcell_value-1) < zero_threshold) - subcell_interpolation(j, i) = 1.; - else - // we have put our - // evaluation - // points onto the - // interpolation - // points, so we - // should either - // get zeros or - // ones! - Assert (false, ExcInternalError()); + if (std::fabs(subcell_value-1) < eps) + { + subcell_permutations[i] = j; +#ifndef DEBUG + break; +#else + n_ones++; +#endif + } + else + Assert (std::fabs(subcell_value) < eps, + ExcInternalError()); } + // make sure that we only + // extracted a single one + // per row, and that each + // row actually got one + // value + Assert (n_ones == this->dofs_per_cell, + ExcDimensionMismatch(n_ones, this->dofs_per_cell)); + for (unsigned int i=0; idofs_per_cell; ++i) + Assert (subcell_permutations[i] < this->dofs_per_cell, + ExcInternalError()); + // next evaluate the + // functions for the + // different refinement + // cases. for (unsigned int ref=0; ref::isotropic_refinement; ++ref) for (unsigned int child=0; child::n_children(RefinementCase(ref+1)); ++child) { @@ -1630,7 +1631,7 @@ FE_Q::initialize_embedding () // a linear growth in // degree*dim, times a // small constant. - if (std::fabs(cell_value) < zero_threshold) + if (std::fabs(cell_value) < eps) cell_interpolation(j, i) = 0.; else cell_interpolation(j, i) = cell_value; @@ -1638,32 +1639,21 @@ FE_Q::initialize_embedding () } // then compute the embedding - // matrix for this child and - // this coordinate - // direction. by the same trick - // as with the constraint - // matrices, don't compute the - // inverse of - // subcell_interpolation, but - // use the fact that we have - // put our interpolation points - // onto the interpolation - // points of the Lagrange - // polynomials used here. then, - // the subcell_interpolation - // matrix is just a permutation - // of the identity matrix and - // its inverse is also its - // transpose - subcell_interpolation.Tmmult (this->prolongation[ref][child], - cell_interpolation); - - // cut off very small values - // here + // matrix by applying the + // inverse of the subcell + // matrix on the + // cell_interpolation + // matrix. since the subcell + // matrix is actually only a + // permutation vector, all we + // need to do is to switch the + // rows we store. moreover, cut + // off very small values here for (unsigned int i=0; idofs_per_cell; ++i) for (unsigned int j=0; jdofs_per_cell; ++j) - if (std::fabs(this->prolongation[ref][child](i,j)) < zero_threshold) - this->prolongation[ref][child](i,j) = 0.; + if (std::fabs(cell_interpolation(i,j)) > eps) + this->prolongation[ref][child](subcell_permutations[i],j) = + cell_interpolation(i,j); // and make sure that the row // sum is 1. this must be so @@ -1674,7 +1664,7 @@ FE_Q::initialize_embedding () double sum = 0; for (unsigned int col=0; coldofs_per_cell; ++col) sum += this->prolongation[ref][child](row,col); - Assert (std::fabs(sum-1.) < zero_threshold, + Assert (std::fabs(sum-1.) < eps, ExcInternalError()); } } @@ -1732,7 +1722,7 @@ FE_Q::initialize_restriction () // (compute on a later child), so // we don't have to care about this - const double zero_threshold = 2e-13*this->degree*this->degree*dim; + const double eps = 2e-13*this->degree*this->degree*dim; for (unsigned int i=0; idofs_per_cell; ++i) { @@ -1744,7 +1734,7 @@ FE_Q::initialize_restriction () { const double val = this->poly_space.compute_value(mother_dof, p_cell); - if (std::fabs (val-1.) < zero_threshold) + if (std::fabs (val-1.) < eps) // ok, this is the right // dof break; @@ -1752,13 +1742,13 @@ FE_Q::initialize_restriction () // make sure that all // other shape functions // are zero there - Assert (std::fabs(val) < zero_threshold, ExcInternalError()); + Assert (std::fabs(val) < eps, ExcInternalError()); } // check also the shape // functions after tat for (unsigned int j=mother_dof+1; jdofs_per_cell; ++j) Assert (std::fabs (this->poly_space.compute_value(j, p_cell)) - < zero_threshold, + < eps, ExcInternalError()); // then find the children on @@ -1790,15 +1780,15 @@ FE_Q::initialize_restriction () { const double val = this->poly_space.compute_value(child_dof, p_subcell); - if (std::fabs (val-1.) < zero_threshold) + if (std::fabs (val-1.) < eps) break; else - Assert (std::fabs(val) < zero_threshold, + Assert (std::fabs(val) < eps, ExcInternalError()); } for (unsigned int j=child_dof+1; jdofs_per_cell; ++j) Assert (std::fabs (this->poly_space.compute_value(j, p_subcell)) - < zero_threshold, + < eps, ExcInternalError()); // so now that we have