From: Wolfgang Bangerth Date: Sat, 11 Feb 2006 06:33:44 +0000 (+0000) Subject: Move ahead with documenting step-20. X-Git-Tag: v8.0.0~12361 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=2851c86d111d22137311008f23ec9d964a1b8b99;p=dealii.git Move ahead with documenting step-20. git-svn-id: https://svn.dealii.org/trunk@12319 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-20/step-20.cc b/deal.II/examples/step-20/step-20.cc index 4c92daa0ef..f234b957f9 100644 --- a/deal.II/examples/step-20/step-20.cc +++ b/deal.II/examples/step-20/step-20.cc @@ -183,8 +183,9 @@ class ExactSolution : public Function // And then we also have to define // these respective functions, of - // course. Given the ones that we - // discussed in the introduction, the + // course. Given our discussion in + // the introduction of how the + // solution should look like, the // following computations should be // straightforward: template @@ -225,10 +226,56 @@ ExactSolution::vector_value (const Point &p, - // @sect3{The permability tensor K} - + // @sect3{The inverse permability tensor} + + // In addition to the other equation + // data, we also want to use a + // permeability tensor, or better -- + // because this is all that appears + // in the weak form -- the inverse of + // the permeability tensor, + // ``KInverse''. For the purpose of + // verifying the exactness of the + // solution and determining + // convergence orders, this tensor is + // more in the way than helpful. We + // will therefore simply set it to + // the identity matrix. + // + // However, a spatially varying + // permeability tensor is + // indispensable in real-life porous + // media flow simulations, and we + // would like to use the opportunity + // to demonstrate the technique to + // use tensor valued functions. + // + // Possibly unsurprising, deal.II + // also has a base class not only for + // scalar and generally vector-valued + // functions (the ``Function'' base + // class) but also for functions that + // return tensors of fixed dimension + // and rank, the ``TensorFunction'' + // template. Here, the function under + // consideration returns a dim-by-dim + // matrix, i.e. a tensor of rank 2 + // and dimension ``dim''. We then + // choose the template arguments of + // the base class appropriately. + // + // The interface that the + // ``TensorFunction'' class provides + // is essentially equivalent to the + // ``Function'' class. In particular, + // there exists a ``value_list'' + // function that takes a list of + // points at which to evaluate the + // function, and returns the values + // of the function in the second + // argument, a list of tensors: template -class Coefficient : public TensorFunction<2,dim> +class KInverse : public TensorFunction<2,dim> { public: virtual void value_list (const std::vector > &points, @@ -236,9 +283,23 @@ class Coefficient : public TensorFunction<2,dim> }; + // The implementation is less + // interesting. As in previous + // examples, we add a check to the + // beginning of the class to make + // sure that the sizes of input and + // output parameters are the same + // (see step-5 for a discussion of + // this technique). Then we loop over + // all evaluation points, and for + // each one first clear the output + // tensor and then set all its + // diagonal elements to one + // (i.e. fill the tensor with the + // identity matrix): template void -Coefficient::value_list (const std::vector > &points, +KInverse::value_list (const std::vector > &points, std::vector > &values) const { Assert (points.size() == values.size(), @@ -254,69 +315,14 @@ Coefficient::value_list (const std::vector > &points, } + // @sect3{extract_u and friends} - - -template -MixedLaplaceProblem::MixedLaplaceProblem (const unsigned int degree) - : - degree (degree), - fe (FE_RaviartThomas(degree),1,FE_DGQ(degree),1), - dof_handler (triangulation) -{} - - -template -void MixedLaplaceProblem::make_grid_and_dofs () -{ - GridGenerator::hyper_cube (triangulation, -1, 1); - triangulation.refine_global (3); - - std::cout << " Number of active cells: " - << triangulation.n_active_cells() - << std::endl - << " Total number of cells: " - << triangulation.n_cells() - << std::endl; - - dof_handler.distribute_dofs (fe); - DoFRenumbering::component_wise (dof_handler); - - std::vector dofs_per_component (dim+1); - DoFTools::count_dofs_per_component (dof_handler, dofs_per_component); - const unsigned int n_u = dofs_per_component[0], - n_p = dofs_per_component[dim]; - - std::cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() - << " (" << n_u << '+' << n_p << ')' - << std::endl; - - sparsity_pattern.reinit (2,2); - sparsity_pattern.block(0,0).reinit (n_u, n_u, - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.block(1,0).reinit (n_p, n_u, - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.block(0,1).reinit (n_u, n_p, - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.block(1,1).reinit (n_p, n_p, - dof_handler.max_couplings_between_dofs()); - sparsity_pattern.collect_sizes(); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); - sparsity_pattern.compress(); - - system_matrix.reinit (sparsity_pattern); - - std::vector block_components (2); - block_components[0] = n_u; - block_components[1] = n_p; - solution.reinit (block_components); - system_rhs.reinit (block_components); -} - - - - + // The next three functions are + // needed for matrix and right hand + // side assembly. They are described + // in detail in the introduction to + // this program, so that we do not + // need to discuss them here again: template Tensor<1,dim> extract_u (const FEValuesBase &fe_values, @@ -358,6 +364,221 @@ double extract_p (const FEValuesBase &fe_values, + // @sect3{MixedLaplaceProblem class implementation} + + // @sect4{MixedLaplaceProblem::MixedLaplaceProblem} + + // In the constructor of this class, + // we first store the value that was + // passed in concerning the degree of + // the finite elements we shall use + // (a degree of zero, for example, + // means to use RT(0) and DG(0)), and + // then construct the vector valued + // element belonging to the space X_h + // described in the introduction. The + // rest of the constructor is as in + // the early tutorial programs. + // + // The only thing worth describing + // here is the constructor call of + // the ``fe'' variable. The + // ``FESystem'' class to which this + // variable belongs has a number of + // different constructors that all + // refer to binding simpler elements + // together into one larger + // element. In the present case, we + // want to couple a single RT(degree) + // element with a single DQ(degree) + // element. The constructor to + // ``FESystem'' that does this + // requires us to specity first the + // first base element (the + // ``FE_RaviartThomas'' object of + // given degree) and then the number + // of copies for this base element, + // and then similarly the kind and + // number of ``FE_DGQ'' + // elements. Note that the Raviart + // Thomas element already has ``dim'' + // vector components, so that the + // coupled element will have + // ``dim+1'' vector components, the + // first ``dim'' of which correspond + // to the velocity variable whereas the + // last one corresponds to the + // pressure. + // + // It is also worth comparing the way + // we constructed this element from + // its base elements, with the way we + // have done so in step-8: there, we + // have built it as ``fe + // (FE_Q(1), dim)'', i.e. we + // have simply used ``dim'' copies of + // the ``FE_Q(1)'' element, one copy + // for the displacement in each + // coordinate direction. +template +MixedLaplaceProblem::MixedLaplaceProblem (const unsigned int degree) + : + degree (degree), + fe (FE_RaviartThomas(degree), 1, + FE_DGQ(degree), 1), + dof_handler (triangulation) +{} + + + + // @sect4{MixedLaplaceProblem::make_grid_and_dofs} + + // This next function starts out with + // well-known functions calls that + // create and refine a mesh, and then + // associate degrees of freedom with + // it: +template +void MixedLaplaceProblem::make_grid_and_dofs () +{ + GridGenerator::hyper_cube (triangulation, -1, 1); + triangulation.refine_global (3); + + dof_handler.distribute_dofs (fe); + + // However, then things become + // different. As mentioned in the + // introduction, we want to + // subdivide the matrix into blocks + // corresponding to the two + // different kinds of variables, + // velocity and pressure. To this end, + // we first have to make sure that + // the indices corresponding to + // velocities and pressures are not + // intermingled: First all velocity + // degrees of freedom, then all + // pressure DoFs. This way, the + // global matrix separates nicely + // into a 2x2 system. To achieve + // this, we have to renumber + // degrees of freedom base on their + // vector component, an operation + // that conveniently is already + // implemented: + DoFRenumbering::component_wise (dof_handler); + + // The next thing is that we want + // to figure out the sizes of these + // blocks, so that we can allocate + // an appropriate amount of + // space. To this end, we call the + // ``DoFTools::count_dofs_per_component'' + // function that counts how many + // shape functions are non-zero for + // a particular vector + // component. We have ``dim+1'' + // vector components, and we have + // to use the knowledge that for + // Raviart-Thomas elements all + // shape functions are nonzero in + // all components. In other words, + // the number of velocity shape + // functions equals the number of + // overall shape functions that are + // nonzero in the zeroth vector + // component. On the other hand, + // the number of pressure variables + // equals the number of shape + // functions that are nonzero in + // the dim-th component. Let us + // compute these numbers and then + // create some nice output with + // that: + std::vector dofs_per_component (dim+1); + DoFTools::count_dofs_per_component (dof_handler, dofs_per_component); + const unsigned int n_u = dofs_per_component[0], + n_p = dofs_per_component[dim]; + + std::cout << " Number of active cells: " + << triangulation.n_active_cells() + << std::endl + << " Total number of cells: " + << triangulation.n_cells() + << std::endl + << " Number of degrees of freedom: " + << dof_handler.n_dofs() + << " (" << n_u << '+' << n_p << ')' + << std::endl; + + // The next task is to allocate a + // sparsity pattern for the matrix + // that we will create. The way + // this works is that we first + // obtain a guess for the maximal + // number of nonzero entries per + // row (this could be done more + // efficiently in this case, but we + // only want to solve relatively + // small problems for which this is + // not so important). In the second + // step, we allocate a 2x2 block + // pattern and then reinitialize + // each of the blocks to its + // correct size using the ``n_u'' + // and ``n_p'' variables defined + // above that hold the number of + // velocity and pressure + // variables. In this second step, + // we only operate on the + // individual blocks of the + // system. In the third step, we + // therefore have to instruct the + // overlying block system to update + // its knowledge about the sizes of + // the blocks it manages; this + // happens with the + // ``sparsity_pattern.collect_sizes()'' + // call: + const unsigned int + n_couplings = dof_handler.max_couplings_between_dofs(); + + sparsity_pattern.reinit (2,2); + sparsity_pattern.block(0,0).reinit (n_u, n_u, n_couplings); + sparsity_pattern.block(1,0).reinit (n_p, n_u, n_couplings); + sparsity_pattern.block(0,1).reinit (n_u, n_p, n_couplings); + sparsity_pattern.block(1,1).reinit (n_p, n_p, n_couplings); + sparsity_pattern.collect_sizes(); + + // Now that the sparsity pattern + // and its blocks have the correct + // sizes, we actually need to + // construct the content of this + // pattern, and as usual compress + // it, before we also initialize a + // block matrix with this block + // sparsity pattern: + DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); + sparsity_pattern.compress(); + + system_matrix.reinit (sparsity_pattern); + + // Then we have to resize the + // solution and right hand side + // vectors in exactly the same way: + solution.reinit (2); + solution.block(0).reinit (n_u); + solution.block(1).reinit (n_p); + solution.collect_sizes (); + + system_rhs.reinit (2); + system_rhs.block(0).reinit (n_u); + system_rhs.block(1).reinit (n_p); + system_rhs.collect_sizes (); +} + + + // @sect4{MixedLaplaceProblem::assemble_system} template void MixedLaplaceProblem::assemble_system () { @@ -381,11 +602,11 @@ void MixedLaplaceProblem::assemble_system () const RightHandSide right_hand_side; const PressureBoundaryValues pressure_boundary_values; - const Coefficient coefficient; + const KInverse k_inverse; std::vector rhs_values (n_q_points); std::vector boundary_values (n_face_q_points); - std::vector > Kinverse (n_q_points); + std::vector > k_inverse_values (n_q_points); std::vector local_dof_indices (dofs_per_cell); @@ -401,8 +622,8 @@ void MixedLaplaceProblem::assemble_system () right_hand_side.value_list (fe_values.get_quadrature_points(), rhs_values); - coefficient.value_list (fe_values.get_quadrature_points(), - Kinverse); + k_inverse.value_list (fe_values.get_quadrature_points(), + k_inverse_values); for (unsigned int q=0; q::assemble_system () const double div_phi_j_u = extract_div_u (fe_values, j, q); const double phi_j_p = extract_p (fe_values, j, q); - local_matrix(i,j) += (phi_i_u * Kinverse[q] * phi_j_u + local_matrix(i,j) += (phi_i_u * k_inverse_values[q] * phi_j_u - div_phi_i_u * phi_j_p - phi_i_p * div_phi_j_u) * fe_values.JxW(q); @@ -565,7 +786,7 @@ void MixedLaplaceProblem::compute_errors () const Vector tmp (triangulation.n_active_cells()); ExactSolution exact_solution; - // do NOT use QGauss here! + // do NOT use QGauss here! QTrapez<1> q_trapez; QIterated quadrature (q_trapez, 5); {