geodynamics
Step-35 |
- A projection solver for the Navier-Stokes equations.
+ | A projection solver for the Navier–Stokes equations.
|
@@ -281,6 +281,12 @@ the geodynamics
Using SLEPc for linear algebra; solving an eigenspectrum
problem. The Schrödinger wave equation.
|
+
+
+ Step-37 |
+ Implementing matrix-vector products without explicitly
+ storing the matrix elements (a matrix-free method).
+ |
@@ -441,7 +447,8 @@ by topic:
|
- Step-16 |
+ Step-16,
+ Step-37 |
Multilevel preconditioners
|
@@ -486,7 +493,8 @@ by topic:
|
Step-16,
- Step-31 |
+ Step-31,
+ Step-37
Multilevel preconditioners
|
diff --git a/deal.II/examples/step-37/doc/intro.dox b/deal.II/examples/step-37/doc/intro.dox
index 381a779dca..b9f5aa6de6 100644
--- a/deal.II/examples/step-37/doc/intro.dox
+++ b/deal.II/examples/step-37/doc/intro.dox
@@ -122,9 +122,10 @@ assembly of matrices.
If we are to perform a matrix-vector product, we can hence use that
@f{eqnarray*}
y &=& A\cdot x = \left(\sum_{\text{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T
-A_\mathrm{cell} P_\mathrm{cell,{loc-glob}}\right) \cdot x\\
+A_\mathrm{cell} P_\mathrm{cell,{loc-glob}}\right) \cdot x
+\\
&=& \sum_{\mathrm{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T
-A_\mathrm{cell} x_\mathrm{cell},
+A_\mathrm{cell} x_\mathrm{cell}
\\
&=& \sum_{\mathrm{cell}=1}^{\mathrm{n\_cells}} P_\mathrm{cell,{loc-glob}}^T
y_\mathrm{cell},