From: Wolfgang Bangerth Date: Wed, 20 Jan 2010 13:01:27 +0000 (+0000) Subject: Simplify code slightly. X-Git-Tag: v8.0.0~6611 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=28c716327d0735e340344770fdfa3c5621961240;p=dealii.git Simplify code slightly. git-svn-id: https://svn.dealii.org/trunk@20395 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-38/step-38.cc b/deal.II/examples/step-38/step-38.cc index 383a724020..0478ddab9b 100644 --- a/deal.II/examples/step-38/step-38.cc +++ b/deal.II/examples/step-38/step-38.cc @@ -124,12 +124,9 @@ class DGIntegrator : public Subscriptor // cells and faces. They are the // ones doing the actual // integration. - void cell(CellInfo& info) const; - void bdry(FaceInfo& info) const; - void face(FaceInfo& info1, FaceInfo& info2) const; - - private: - BoundaryValues boundary_function; + static void cell(CellInfo& info); + static void bdry(FaceInfo& info); + static void face(FaceInfo& info1, FaceInfo& info2); }; // @sect4{The local integrators} @@ -150,7 +147,7 @@ class DGIntegrator : public Subscriptor // added soon). template -void DGIntegrator::cell(CellInfo& info) const +void DGIntegrator::cell(CellInfo& info) { // First, let us retrieve some of // the objects used here from @@ -163,7 +160,7 @@ void DGIntegrator::cell(CellInfo& info) const FullMatrix& local_matrix = info.M1[0].matrix; Vector& local_vector = info.R[0].block(0); const std::vector &JxW = fe_v.get_JxW_values (); - + // With these objects, we continue // local integration like // always. First, we loop over the @@ -176,14 +173,14 @@ void DGIntegrator::cell(CellInfo& info) const beta(0) = -fe_v.quadrature_point(point)(1); beta(1) = fe_v.quadrature_point(point)(0); beta /= beta.norm(); - + // We solve a homogeneous // equation, thus no right // hand side shows up in // the cell term. // What's left is // integrating the matrix entries. - for (unsigned int i=0; i::cell(CellInfo& info) const // FESubfaceValues, in order to get access to // normal vectors. template -void DGIntegrator::bdry(FaceInfo& info) const +void DGIntegrator::bdry(FaceInfo& info) { const FEFaceValuesBase& fe_v = info.fe(); FullMatrix& local_matrix = info.M1[0].matrix; @@ -205,9 +202,10 @@ void DGIntegrator::bdry(FaceInfo& info) const const std::vector &JxW = fe_v.get_JxW_values (); const std::vector > &normals = fe_v.get_normal_vectors (); - + std::vector g(fe_v.n_quadrature_points); - + + static BoundaryValues boundary_function; boundary_function.value_list (fe_v.get_quadrature_points(), g); for (unsigned int point=0; point::bdry(FaceInfo& info) const beta(0) = -fe_v.quadrature_point(point)(1); beta(1) = fe_v.quadrature_point(point)(0); beta /= beta.norm(); - - const double beta_n=beta * normals[point]; + + const double beta_n=beta * normals[point]; if (beta_n>0) for (unsigned int i=0; i::bdry(FaceInfo& info) const // for each cell and two for coupling // back and forth. template -void DGIntegrator::face(FaceInfo& info1, FaceInfo& info2) const +void DGIntegrator::face(FaceInfo& info1, FaceInfo& info2) { // For quadrature points, weights, // etc., we use the @@ -254,7 +252,7 @@ void DGIntegrator::face(FaceInfo& info1, FaceInfo& info2) const // we have to ask the neighbors // FEFaceValuesBase. const FEFaceValuesBase& fe_v_neighbor = info2.fe(); - + // Then we get references to the // four local matrices. The letters // u and v refer to trial and test @@ -272,7 +270,7 @@ void DGIntegrator::face(FaceInfo& info1, FaceInfo& info2) const FullMatrix& u2_v1_matrix = info1.M2[0].matrix; FullMatrix& u1_v2_matrix = info2.M2[0].matrix; FullMatrix& u2_v2_matrix = info2.M1[0].matrix; - + // Here, following the previous // functions, we would have the // local right hand side @@ -280,17 +278,17 @@ void DGIntegrator::face(FaceInfo& info1, FaceInfo& info2) const // interface terms only involve the // solution and the right hand side // does not receive any contributions. - + const std::vector &JxW = fe_v.get_JxW_values (); const std::vector > &normals = fe_v.get_normal_vectors (); - + for (unsigned int point=0; point beta; beta(0) = -fe_v.quadrature_point(point)(1); beta(1) = fe_v.quadrature_point(point)(0); beta /= beta.norm(); - + const double beta_n=beta * normals[point]; if (beta_n>0) { @@ -359,17 +357,17 @@ class DGMethod ~DGMethod (); void run (); - + private: void setup_system (); void assemble_system (); void solve (Vector &solution); void refine_grid (); void output_results (const unsigned int cycle) const; - + Triangulation triangulation; const MappingQ1 mapping; - + // Furthermore we want to use DG // elements of degree 1 (but this // is only specified in the @@ -399,7 +397,7 @@ class DGMethod // single assemble_system // function declared above: Vector solution; - Vector right_hand_side; + Vector right_hand_side; }; @@ -418,7 +416,7 @@ DGMethod::DGMethod () template -DGMethod::~DGMethod () +DGMethod::~DGMethod () { dof_handler.clear (); } @@ -446,7 +444,7 @@ void DGMethod::setup_system () GeometryInfo::max_children_per_face + 1)*fe.dofs_per_cell); - + // To build the sparsity pattern for DG // discretizations, we can call the // function analogue to @@ -454,11 +452,11 @@ void DGMethod::setup_system () // is called // DoFTools::make_flux_sparsity_pattern: DoFTools::make_flux_sparsity_pattern (dof_handler, sparsity_pattern); - + // All following function calls are // already known. sparsity_pattern.compress(); - + system_matrix.reinit (sparsity_pattern); solution.reinit (dof_handler.n_dofs()); @@ -476,7 +474,7 @@ void DGMethod::setup_system () // classes in namespace MeshWorker::Assembler // to build the global system. template -void DGMethod::assemble_system () +void DGMethod::assemble_system () { // Here we generate an object of // our own integration class, which @@ -518,7 +516,7 @@ void DGMethod::assemble_system () Vector >, DGIntegrator > integrator(dg); - + // First, we initialize the // quadrature formulae and the // update flags in the worker base @@ -596,7 +594,7 @@ void DGMethod::assemble_system () // PreconditionBlockSOR class with // relaxation=1) does a much better job. template -void DGMethod::solve (Vector &solution) +void DGMethod::solve (Vector &solution) { SolverControl solver_control (1000, 1e-12, false, false); SolverRichardson<> solver (solver_control); @@ -705,31 +703,31 @@ void DGMethod::output_results (const unsigned int cycle) const std::string filename = "grid-"; filename += ('0' + cycle); Assert (cycle < 10, ExcInternalError()); - + filename += ".eps"; std::cout << "Writing grid to <" << filename << ">..." << std::endl; std::ofstream eps_output (filename.c_str()); GridOut grid_out; grid_out.write_eps (triangulation, eps_output); - + // Output of the solution in // gnuplot format. filename = "sol-"; filename += ('0' + cycle); Assert (cycle < 10, ExcInternalError()); - + filename += ".gnuplot"; std::cout << "Writing solution to <" << filename << ">..." << std::endl << std::endl; std::ofstream gnuplot_output (filename.c_str()); - + DataOut data_out; data_out.attach_dof_handler (dof_handler); data_out.add_data_vector (solution, "u"); data_out.build_patches (); - + data_out.write_gnuplot(gnuplot_output); } @@ -737,7 +735,7 @@ void DGMethod::output_results (const unsigned int cycle) const // The following run function is // similar to previous examples. template -void DGMethod::run () +void DGMethod::run () { for (unsigned int cycle=0; cycle<6; ++cycle) { @@ -751,7 +749,7 @@ void DGMethod::run () } else refine_grid (); - + std::cout << " Number of active cells: " << triangulation.n_active_cells() @@ -773,7 +771,7 @@ void DGMethod::run () // The following main function is // similar to previous examples as well, and // need not be commented on. -int main () +int main () { try { @@ -792,7 +790,7 @@ int main () << std::endl; return 1; } - catch (...) + catch (...) { std::cerr << std::endl << std::endl << "----------------------------------------------------" @@ -803,7 +801,7 @@ int main () << std::endl; return 1; }; - + return 0; }