From: frohne Date: Fri, 17 Aug 2012 10:41:18 +0000 (+0000) Subject: changing the reference for saddle point problem; fixed bug in E(u) X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=29590d4893dffd58cd8a0aa076324e2ab7c3a151;p=dealii-svn.git changing the reference for saddle point problem; fixed bug in E(u) git-svn-id: https://svn.dealii.org/trunk@26001 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-41/doc/intro.dox b/deal.II/examples/step-41/doc/intro.dox index 42dec00a16..360833e05d 100644 --- a/deal.II/examples/step-41/doc/intro.dox +++ b/deal.II/examples/step-41/doc/intro.dox @@ -91,7 +91,7 @@ obstacle). An obvious way to obtain the variational formulation of the obstacle problem is to consider the total potential energy: @f{equation*} - E(u):=\dfrac{1}{2}\int\limits_{\Omega} \nabla u \cdot \nabla - \int\limits_{\Omega} fu. + E(u):=\dfrac{1}{2}\int\limits_{\Omega} \nabla u \cdot \nabla u - \int\limits_{\Omega} fu. @f} We have to find a solution $u\in G$ of the following minimization problem: @f{equation*} @@ -165,9 +165,8 @@ statement above only appears to have the wrong sign because we have $\mu-\lambda<0$ at points where $\lambda=0$, given the definition of $K$. The existence and uniqueness of $(u,\lambda)\in V\times K$ of this saddle -point problem has been stated in Grossmann and Roos: Numerical treatment of -partial differential equations, Springer-Verlag, Heidelberg-Berlin, 2007, 596 -pages, ISBN 978-3-540-71582-5. +point problem has been stated in Glowinski, Lions and Tr\'{e}moli\`{e}res: Numerical Analysis of Variational +Inequalities, North-Holland, 1981.