From: Bruno Turcksin Date: Thu, 9 May 2013 19:11:46 +0000 (+0000) Subject: Merge from mainline. X-Git-Tag: v8.0.0~316^2~23 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=2cb30a8e2c0a807e258f591739ec3b4bb1ce3e1b;p=dealii.git Merge from mainline. git-svn-id: https://svn.dealii.org/branches/branch_bigger_global_dof_indices_4@29488 0785d39b-7218-0410-832d-ea1e28bc413d --- 2cb30a8e2c0a807e258f591739ec3b4bb1ce3e1b diff --cc deal.II/include/deal.II/lac/chunk_sparse_matrix.h index bb3b4d8ce8,8ceb359cfa..5ecc459342 --- a/deal.II/include/deal.II/lac/chunk_sparse_matrix.h +++ b/deal.II/include/deal.II/lac/chunk_sparse_matrix.h @@@ -290,57 -573,40 +578,40 @@@ public bool empty () const; /** - * Return the dimension of the - * image space. To remember: the - * matrix is of dimension - * $m \times n$. + * Return the dimension of the image space. To remember: the matrix is of + * dimension $m \times n$. */ - unsigned int m () const; + size_type m () const; /** - * Return the dimension of the - * range space. To remember: the - * matrix is of dimension - * $m \times n$. + * Return the dimension of the range space. To remember: the matrix is of + * dimension $m \times n$. */ - unsigned int n () const; + size_type n () const; /** - * Return the number of nonzero - * elements of this - * matrix. Actually, it returns - * the number of entries in the - * sparsity pattern; if any of - * the entries should happen to - * be zero, it is counted anyway. + * Return the number of nonzero elements of this matrix. Actually, it + * returns the number of entries in the sparsity pattern; if any of the + * entries should happen to be zero, it is counted anyway. */ - unsigned int n_nonzero_elements () const; + size_type n_nonzero_elements () const; /** - * Return the number of actually - * nonzero elements of this - * matrix. + * Return the number of actually nonzero elements of this matrix. * - * Note, that this function does - * (in contrary to - * n_nonzero_elements()) not - * count all entries of the - * sparsity pattern but only the - * ones that are nonzero. + * Note, that this function does (in contrary to n_nonzero_elements()) not + * count all entries of the sparsity pattern but only the ones that are + * nonzero. */ - unsigned int n_actually_nonzero_elements () const; + size_type n_actually_nonzero_elements () const; /** - * Return a (constant) reference - * to the underlying sparsity - * pattern of this matrix. + * Return a (constant) reference to the underlying sparsity pattern of this + * matrix. * - * Though the return value is - * declared const, you - * should be aware that it may - * change if you call any - * nonconstant function of - * objects which operate on it. + * Though the return value is declared const, you should be aware + * that it may change if you call any nonconstant function of objects which + * operate on it. */ const ChunkSparsityPattern &get_sparsity_pattern () const; @@@ -358,59 -622,42 +627,42 @@@ */ //@{ /** - * Set the element (i,j) - * to value. Throws an - * error if the entry does not - * exist or if value is - * not a finite number. Still, it - * is allowed to store zero - * values in non-existent fields. + * Set the element (i,j) to value. Throws an error if the + * entry does not exist or if value is not a finite number. Still, + * it is allowed to store zero values in non-existent fields. */ - void set (const unsigned int i, - const unsigned int j, + void set (const size_type i, + const size_type j, const number value); /** - * Add value to the - * element (i,j). Throws - * an error if the entry does not - * exist or if value is - * not a finite number. Still, it - * is allowed to store zero - * values in non-existent fields. + * Add value to the element (i,j). Throws an error if the + * entry does not exist or if value is not a finite number. Still, + * it is allowed to store zero values in non-existent fields. */ - void add (const unsigned int i, - const unsigned int j, + void add (const size_type i, + const size_type j, const number value); /** - * Add an array of values given by - * values in the given - * global matrix row at columns - * specified by col_indices in the - * sparse matrix. + * Add an array of values given by values in the given global + * matrix row at columns specified by col_indices in the sparse matrix. * - * The optional parameter - * elide_zero_values can be - * used to specify whether zero - * values should be added anyway or - * these should be filtered away and - * only non-zero data is added. The - * default value is true, - * i.e., zero values won't be added - * into the matrix. + * The optional parameter elide_zero_values can be used to specify + * whether zero values should be added anyway or these should be filtered + * away and only non-zero data is added. The default value is true, + * i.e., zero values won't be added into the matrix. */ template - void add (const unsigned int row, - const unsigned int n_cols, - const unsigned int *col_indices, - const number2 *values, - const bool elide_zero_values = true, - const bool col_indices_are_sorted = false); + void add (const size_type row, + const size_type n_cols, + const size_type *col_indices, + const number2 *values, + const bool elide_zero_values = true, + const bool col_indices_are_sorted = false); /** - * Multiply the entire matrix by a - * fixed factor. + * Multiply the entire matrix by a fixed factor. */ ChunkSparseMatrix &operator *= (const number factor); @@@ -556,58 -748,35 +753,35 @@@ //@{ /** - * Return the value of the entry - * (i,j). This may be an - * expensive operation and you - * should always take care where - * to call this function. In - * order to avoid abuse, this - * function throws an exception - * if the required element does - * not exist in the matrix. + * Return the value of the entry (i,j). This may be an expensive + * operation and you should always take care where to call this function. + * In order to avoid abuse, this function throws an exception if the + * required element does not exist in the matrix. * - * In case you want a function - * that returns zero instead (for - * entries that are not in the - * sparsity pattern of the - * matrix), use the el() - * function. + * In case you want a function that returns zero instead (for entries that + * are not in the sparsity pattern of the matrix), use the el() function. * - * If you are looping over all elements, - * consider using one of the iterator - * classes instead, since they are - * tailored better to a sparse matrix + * If you are looping over all elements, consider using one of the iterator + * classes instead, since they are tailored better to a sparse matrix * structure. */ - number operator () (const unsigned int i, - const unsigned int j) const; + number operator () (const size_type i, + const size_type j) const; /** - * This function is mostly like - * operator()() in that it - * returns the value of the - * matrix entry (i,j). The - * only difference is that if - * this entry does not exist in - * the sparsity pattern, then - * instead of raising an - * exception, zero is - * returned. While this may be - * convenient in some cases, note - * that it is simple to write - * algorithms that are slow - * compared to an optimal - * solution, since the sparsity - * of the matrix is not used. + * This function is mostly like operator()() in that it returns the value of + * the matrix entry (i,j). The only difference is that if this entry + * does not exist in the sparsity pattern, then instead of raising an + * exception, zero is returned. While this may be convenient in some cases, + * note that it is simple to write algorithms that are slow compared to an + * optimal solution, since the sparsity of the matrix is not used. * - * If you are looping over all elements, - * consider using one of the iterator - * classes instead, since they are - * tailored better to a sparse matrix + * If you are looping over all elements, consider using one of the iterator + * classes instead, since they are tailored better to a sparse matrix * structure. */ - number el (const unsigned int i, - const unsigned int j) const; + number el (const size_type i, + const size_type j) const; /** * Return the main diagonal @@@ -616,23 -785,18 +790,18 @@@ * error if the matrix is not * quadratic. * - * This function is considerably - * faster than the operator()(), - * since for quadratic matrices, the - * diagonal entry may be the - * first to be stored in each row - * and access therefore does not - * involve searching for the - * right column number. + * This function is considerably faster than the operator()(), since for + * quadratic matrices, the diagonal entry may be the first to be stored in + * each row and access therefore does not involve searching for the right + * column number. */ - number diag_element (const unsigned int i) const; + number diag_element (const size_type i) const; /** - * Same as above, but return a - * writeable reference. You're - * sure you know what you do? + * Same as above, but return a writeable reference. You're sure you know + * what you do? */ - number &diag_element (const unsigned int i); + number &diag_element (const size_type i); //@} /** @@@ -1197,28 -1298,28 +1303,28 @@@ private number *val; /** - * Allocated size of #val. This - * can be larger than the - * actually used part if the size - * of the matrix was reduced - * somewhen in the past by - * associating a sparsity pattern - * with a smaller size to this - * object, using the reinit() + * Allocated size of #val. This can be larger than the actually used part if + * the size of the matrix was reduced somewhen in the past by associating a + * sparsity pattern with a smaller size to this object, using the reinit() * function. */ - unsigned int max_len; + size_type max_len; /** - * Return the location of entry - * $(i,j)$ within the val array. + * Return the location of entry $(i,j)$ within the val array. */ - unsigned int compute_location (const unsigned int i, - const unsigned int j) const; + size_type compute_location (const size_type i, + const size_type j) const; - // make all other sparse matrices - // friends + // make all other sparse matrices friends template friend class ChunkSparseMatrix; + + /** + * Also give access to internal details to the iterator/accessor + * classes. + */ + template friend class ChunkSparseMatrixIterators::Iterator; + template friend class ChunkSparseMatrixIterators::Accessor; }; /*@}*/ @@@ -1249,15 -1348,26 +1355,26 @@@ ChunkSparseMatrix::n () cons + template + inline + const ChunkSparsityPattern & + ChunkSparseMatrix::get_sparsity_pattern () const + { + Assert (cols != 0, ExcNotInitialized()); + return *cols; + } + + + template inline -unsigned int -ChunkSparseMatrix::compute_location (const unsigned int i, - const unsigned int j) const +typename ChunkSparseMatrix::size_type +ChunkSparseMatrix::compute_location (const size_type i, + const size_type j) const { - const unsigned int chunk_size = cols->get_chunk_size(); - const unsigned int chunk_index + const size_type chunk_size = cols->get_chunk_size(); + const size_type chunk_index - = cols->sparsity_pattern(i/chunk_size, j/chunk_size); + = cols->sparsity_pattern(i/chunk_size, j/chunk_size); if (chunk_index == ChunkSparsityPattern::invalid_entry) return ChunkSparsityPattern::invalid_entry; @@@ -1282,11 -1392,9 +1399,9 @@@ void ChunkSparseMatrix::set (co Assert (numbers::is_finite(value), ExcNumberNotFinite()); Assert (cols != 0, ExcNotInitialized()); - // it is allowed to set elements of - // the matrix that are not part of - // the sparsity pattern, if the - // value to which we set it is zero + // it is allowed to set elements of the matrix that are not part of the + // sparsity pattern, if the value to which we set it is zero - const unsigned int index = compute_location(i,j); + const size_type index = compute_location(i,j); Assert ((index != SparsityPattern::invalid_entry) || (value == 0.), ExcInvalidIndex(i,j)); @@@ -1345,16 -1453,12 +1460,12 @@@ ChunkSparseMatrix::operator *= Assert (cols != 0, ExcNotInitialized()); Assert (val != 0, ExcNotInitialized()); - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); - // multiply all elements of the matrix with - // the given factor. this includes the - // padding elements in chunks that overlap - // the boundaries of the actual matrix -- - // but since multiplication with a number - // does not violate the invariant of - // keeping these elements at zero nothing - // can happen + // multiply all elements of the matrix with the given factor. this includes + // the padding elements in chunks that overlap the boundaries of the actual + // matrix -- but since multiplication with a number does not violate the + // invariant of keeping these elements at zero nothing can happen number *val_ptr = val; const number *const end_ptr = val + cols->sparsity_pattern.n_nonzero_elements() @@@ -1379,16 -1483,12 +1490,12 @@@ ChunkSparseMatrix::operator /= const number factor_inv = 1. / factor; - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); - // multiply all elements of the matrix with - // the given factor. this includes the - // padding elements in chunks that overlap - // the boundaries of the actual matrix -- - // but since multiplication with a number - // does not violate the invariant of - // keeping these elements at zero nothing - // can happen + // multiply all elements of the matrix with the given factor. this includes + // the padding elements in chunks that overlap the boundaries of the actual + // matrix -- but since multiplication with a number does not violate the + // invariant of keeping these elements at zero nothing can happen number *val_ptr = val; const number *const end_ptr = val + cols->sparsity_pattern.n_nonzero_elements() @@@ -1440,33 -1540,9 +1547,9 @@@ number ChunkSparseMatrix::diag_ Assert (m() == n(), ExcNotQuadratic()); Assert (iget_chunk_size(); - return val[cols->sparsity_pattern.rowstart[i/chunk_size] - * - chunk_size * chunk_size - + - (i % chunk_size) * chunk_size - + - (i % chunk_size)]; - } - - - - template - inline - number &ChunkSparseMatrix::diag_element (const size_type i) - { - Assert (cols != 0, ExcNotInitialized()); - Assert (m() == n(), ExcNotQuadratic()); - Assert (iget_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); return val[cols->sparsity_pattern.rowstart[i/chunk_size] * chunk_size * chunk_size @@@ -1484,14 -1561,13 +1568,13 @@@ voi ChunkSparseMatrix::copy_from (const ForwardIterator begin, const ForwardIterator end) { - Assert (static_cast(std::distance (begin, end)) == m(), + Assert (static_cast(std::distance (begin, end)) == m(), ExcIteratorRange (std::distance (begin, end), m())); - // for use in the inner loop, we - // define a typedef to the type of - // the inner iterators + // for use in the inner loop, we define a typedef to the type of the inner + // iterators typedef typename std::iterator_traits::value_type::const_iterator inner_iterator; - unsigned int row=0; + size_type row=0; for (ForwardIterator i=begin; i!=end; ++i, ++row) { const inner_iterator end_of_row = i->end(); diff --cc deal.II/include/deal.II/lac/chunk_sparse_matrix.templates.h index 19ada3ca0f,bbc1fb9944..d6fad7a4d6 --- a/deal.II/include/deal.II/lac/chunk_sparse_matrix.templates.h +++ b/deal.II/include/deal.II/lac/chunk_sparse_matrix.templates.h @@@ -318,12 -437,10 +444,10 @@@ ChunkSparseMatrix::reinit (cons return; } - // allocate not just m() * n() elements but - // enough so that we can store full - // chunks. this entails some padding - // elements + // allocate not just m() * n() elements but enough so that we can store full + // chunks. this entails some padding elements - const unsigned int chunk_size = cols->get_chunk_size(); - const unsigned int N = cols->sparsity_pattern.n_nonzero_elements() * + const size_type chunk_size = cols->get_chunk_size(); + const size_type N = cols->sparsity_pattern.n_nonzero_elements() * chunk_size * chunk_size; if (N > max_len || max_len == 0) { @@@ -383,12 -498,10 +505,10 @@@ ChunkSparseMatrix::n_actually_n { Assert (cols != 0, ExcNotInitialized()); - // count those elements that are nonzero, - // even if they lie in the padding around - // the matrix. since we have the invariant - // that padding elements are zero, nothing - // bad can happen here + // count those elements that are nonzero, even if they lie in the padding + // around the matrix. since we have the invariant that padding elements are + // zero, nothing bad can happen here - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); return std::count_if(&val[0], &val[cols->sparsity_pattern.n_nonzero_elements () * chunk_size * chunk_size], @@@ -418,9 -531,8 +538,8 @@@ ChunkSparseMatrix::copy_from (c Assert (val != 0, ExcNotInitialized()); Assert (cols == matrix.cols, ExcDifferentChunkSparsityPatterns()); - // copy everything, including padding - // elements + // copy everything, including padding elements - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); std::copy (&matrix.val[0], &matrix.val[cols->sparsity_pattern.n_nonzero_elements() * chunk_size * chunk_size], @@@ -458,9 -570,8 +577,8 @@@ ChunkSparseMatrix::add (const n Assert (val != 0, ExcNotInitialized()); Assert (cols == matrix.cols, ExcDifferentChunkSparsityPatterns()); - // add everything, including padding - // elements + // add everything, including padding elements - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); number *val_ptr = &val[0]; const somenumber *matrix_ptr = &matrix.val[0]; const number *const end_ptr = &val[cols->sparsity_pattern.n_nonzero_elements() @@@ -639,12 -671,10 +678,10 @@@ ChunkSparseMatrix::Tvmult_add ( Assert (!PointerComparison::equal(&src, &dst), ExcSourceEqualsDestination()); - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all chunks. note that we need - // to treat the last chunk row and column - // differently if they have padding - // elements + // loop over all chunks. note that we need to treat the last chunk row and + // column differently if they have padding elements const bool rows_have_padding = (m() % cols->chunk_size != 0), cols_have_padding = (n() % cols->chunk_size != 0); @@@ -653,13 -683,12 +690,12 @@@ n_chunk_rows-1 : n_chunk_rows); - // like in vmult_add, but don't keep an - // iterator into dst around since we're not - // traversing it sequentially this time + // like in vmult_add, but don't keep an iterator into dst around since we're + // not traversing it sequentially this time - const number *val_ptr = val; - const unsigned int *colnum_ptr = cols->sparsity_pattern.colnums; + const number *val_ptr = val; + const size_type *colnum_ptr = cols->sparsity_pattern.colnums; - for (unsigned int chunk_row=0; chunk_rowsparsity_pattern.rowstart[chunk_row+1] * cols->chunk_size @@@ -675,10 -704,9 +711,9 @@@ src.begin() + chunk_row * cols->chunk_size, dst.begin() + *colnum_ptr * cols->chunk_size); else - // we're at a chunk column that - // has padding + // we're at a chunk column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(*colnum_ptr * cols->chunk_size + c) += (val_ptr[r*cols->chunk_size + c] * src(chunk_row * cols->chunk_size + r)); @@@ -688,11 -716,10 +723,10 @@@ } } - // now deal with last chunk row if - // necessary + // now deal with last chunk row if necessary if (rows_have_padding) { - const unsigned int chunk_row = n_chunk_rows - 1; + const size_type chunk_row = n_chunk_rows - 1; const number *const val_end_of_row = &val[cols->sparsity_pattern.rowstart[chunk_row+1] * cols->chunk_size @@@ -703,19 -730,17 +737,17 @@@ || (*colnum_ptr != cols->sparsity_pattern.n_cols()-1)) { - // we're at a chunk row but not - // column that has padding + // we're at a chunk row but not column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(*colnum_ptr * cols->chunk_size + c) += (val_ptr[r*cols->chunk_size + c] * src(chunk_row * cols->chunk_size + r)); } else - // we're at a chunk row and - // column that has padding + // we're at a chunk row and column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(*colnum_ptr * cols->chunk_size + c) += (val_ptr[r*cols->chunk_size + c] * src(chunk_row * cols->chunk_size + r)); @@@ -740,15 -765,12 +772,12 @@@ ChunkSparseMatrix::matrix_norm_ somenumber result = 0; //////////////// - // like matrix_scalar_product, except that - // the two vectors are now the same + // like matrix_scalar_product, except that the two vectors are now the same - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all chunks. note that we need - // to treat the last chunk row and column - // differently if they have padding - // elements + // loop over all chunks. note that we need to treat the last chunk row and + // column differently if they have padding elements const bool rows_have_padding = (m() % cols->chunk_size != 0), cols_have_padding = (n() % cols->chunk_size != 0); @@@ -779,10 -801,9 +808,9 @@@ v_ptr, v.begin() + *colnum_ptr * cols->chunk_size); else - // we're at a chunk column that - // has padding + // we're at a chunk column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += v(chunk_row * cols->chunk_size + r) @@@ -797,11 -818,10 +825,10 @@@ v_ptr += cols->chunk_size; } - // now deal with last chunk row if - // necessary + // now deal with last chunk row if necessary if (rows_have_padding) { - const unsigned int chunk_row = n_chunk_rows - 1; + const size_type chunk_row = n_chunk_rows - 1; const number *const val_end_of_row = &val[cols->sparsity_pattern.rowstart[chunk_row+1] * cols->chunk_size @@@ -812,10 -832,9 +839,9 @@@ || (*colnum_ptr != cols->sparsity_pattern.n_cols()-1)) { - // we're at a chunk row but not - // column that has padding + // we're at a chunk row but not column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += v(chunk_row * cols->chunk_size + r) @@@ -823,10 -842,9 +849,9 @@@ v(*colnum_ptr * cols->chunk_size + c)); } else - // we're at a chunk row and - // column that has padding + // we're at a chunk row and column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += v(chunk_row * cols->chunk_size + r) @@@ -854,16 -872,13 +879,13 @@@ ChunkSparseMatrix::matrix_scala Assert(m() == u.size(), ExcDimensionMismatch(m(),u.size())); Assert(n() == v.size(), ExcDimensionMismatch(n(),v.size())); - // the following works like the vmult_add - // function + // the following works like the vmult_add function somenumber result = 0; - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all chunks. note that we need - // to treat the last chunk row and column - // differently if they have padding - // elements + // loop over all chunks. note that we need to treat the last chunk row and + // column differently if they have padding elements const bool rows_have_padding = (m() % cols->chunk_size != 0), cols_have_padding = (n() % cols->chunk_size != 0); @@@ -894,10 -909,9 +916,9 @@@ u_ptr, v.begin() + *colnum_ptr * cols->chunk_size); else - // we're at a chunk column that - // has padding + // we're at a chunk column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += u(chunk_row * cols->chunk_size + r) @@@ -912,11 -926,10 +933,10 @@@ u_ptr += cols->chunk_size; } - // now deal with last chunk row if - // necessary + // now deal with last chunk row if necessary if (rows_have_padding) { - const unsigned int chunk_row = n_chunk_rows - 1; + const size_type chunk_row = n_chunk_rows - 1; const number *const val_end_of_row = &val[cols->sparsity_pattern.rowstart[chunk_row+1] * cols->chunk_size @@@ -927,10 -940,9 +947,9 @@@ || (*colnum_ptr != cols->sparsity_pattern.n_cols()-1)) { - // we're at a chunk row but not - // column that has padding + // we're at a chunk row but not column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += u(chunk_row * cols->chunk_size + r) @@@ -938,10 -950,9 +957,9 @@@ v(*colnum_ptr * cols->chunk_size + c)); } else - // we're at a chunk row and - // column that has padding + // we're at a chunk row and column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) result += u(chunk_row * cols->chunk_size + r) @@@ -965,13 -976,11 +983,11 @@@ ChunkSparseMatrix::l1_norm () c Assert (cols != 0, ExcNotInitialized()); Assert (val != 0, ExcNotInitialized()); - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all rows and columns; it is - // safe to also loop over the padding - // elements (they are zero) if we make sure - // that the vector into which we sum column - // sums is large enough + // loop over all rows and columns; it is safe to also loop over the padding + // elements (they are zero) if we make sure that the vector into which we + // sum column sums is large enough Vector column_sums(cols->sparsity_pattern.n_cols() * cols->chunk_size); @@@ -999,19 -1008,15 +1015,15 @@@ ChunkSparseMatrix::linfty_norm Assert (cols != 0, ExcNotInitialized()); Assert (val != 0, ExcNotInitialized()); - // this function works like l1_norm(). it - // can be made more efficient (without - // allocating a temporary vector) as is - // done in the SparseMatrix class but since - // it is rarely called in time critical - // places it is probably not worth it + // this function works like l1_norm(). it can be made more efficient + // (without allocating a temporary vector) as is done in the SparseMatrix + // class but since it is rarely called in time critical places it is + // probably not worth it - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all rows and columns; it is - // safe to also loop over the padding - // elements (they are zero) if we make sure - // that the vector into which we sum column - // sums is large enough + // loop over all rows and columns; it is safe to also loop over the padding + // elements (they are zero) if we make sure that the vector into which we + // sum column sums is large enough Vector row_sums(cols->sparsity_pattern.n_rows() * cols->chunk_size); @@@ -1074,16 -1074,13 +1081,13 @@@ ChunkSparseMatrix::residual (Ve dst = b; ///////// - // the rest of this function is like - // vmult_add, except that we subtract + // the rest of this function is like vmult_add, except that we subtract // rather than add A*u ///////// - const unsigned int n_chunk_rows = cols->sparsity_pattern.n_rows(); + const size_type n_chunk_rows = cols->sparsity_pattern.n_rows(); - // loop over all chunks. note that we need - // to treat the last chunk row and column - // differently if they have padding - // elements + // loop over all chunks. note that we need to treat the last chunk row and + // column differently if they have padding elements const bool rows_have_padding = (m() % cols->chunk_size != 0), cols_have_padding = (n() % cols->chunk_size != 0); @@@ -1112,10 -1109,9 +1116,9 @@@ u.begin() + *colnum_ptr * cols->chunk_size, dst_ptr); else - // we're at a chunk column that - // has padding + // we're at a chunk column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(chunk_row * cols->chunk_size + r) -= (val_ptr[r*cols->chunk_size + c] * u(*colnum_ptr * cols->chunk_size + c)); @@@ -1128,11 -1124,10 +1131,10 @@@ dst_ptr += cols->chunk_size; } - // now deal with last chunk row if - // necessary + // now deal with last chunk row if necessary if (rows_have_padding) { - const unsigned int chunk_row = n_chunk_rows - 1; + const size_type chunk_row = n_chunk_rows - 1; const number *const val_end_of_row = &val[cols->sparsity_pattern.rowstart[chunk_row+1] * cols->chunk_size @@@ -1143,19 -1138,17 +1145,17 @@@ || (*colnum_ptr != cols->sparsity_pattern.n_cols()-1)) { - // we're at a chunk row but not - // column that has padding + // we're at a chunk row but not column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(chunk_row * cols->chunk_size + r) -= (val_ptr[r*cols->chunk_size + c] * u(*colnum_ptr * cols->chunk_size + c)); } else - // we're at a chunk row and - // column that has padding + // we're at a chunk row and column that has padding - for (unsigned int r=0; rchunk_size; ++r) - for (unsigned int c=0; cchunk_size; ++c) + for (size_type r=0; rchunk_size; ++r) + for (size_type c=0; cchunk_size; ++c) dst(chunk_row * cols->chunk_size + r) -= (val_ptr[r*cols->chunk_size + c] * u(*colnum_ptr * cols->chunk_size + c)); @@@ -1477,18 -1458,17 +1465,17 @@@ void ChunkSparseMatrix::print_p Assert (cols != 0, ExcNotInitialized()); Assert (val != 0, ExcNotInitialized()); - const unsigned int chunk_size = cols->get_chunk_size(); + const size_type chunk_size = cols->get_chunk_size(); - // loop over all chunk rows and columns, - // and each time we find something repeat - // it chunk_size times in both directions + // loop over all chunk rows and columns, and each time we find something + // repeat it chunk_size times in both directions - for (unsigned int i=0; isparsity_pattern.n_rows(); ++i) + for (size_type i=0; isparsity_pattern.n_rows(); ++i) { - for (unsigned int d=0; dsparsity_pattern.n_cols(); ++j) + for (size_type d=0; dsparsity_pattern.n_cols(); ++j) if (cols->sparsity_pattern(i,j) == SparsityPattern::invalid_entry) { - for (unsigned int e=0; esparsity_pattern(i,j)]) > threshold) diff --cc deal.II/include/deal.II/lac/chunk_sparsity_pattern.h index 8c6618ba6f,200c80303d..73ba343023 --- a/deal.II/include/deal.II/lac/chunk_sparsity_pattern.h +++ b/deal.II/include/deal.II/lac/chunk_sparsity_pattern.h @@@ -46,46 -221,41 +221,45 @@@ namespace ChunkSparsityPatternIterator class ChunkSparsityPattern : public Subscriptor { public: + /** + * Declare the type for container size. + */ + typedef types::global_dof_index size_type; + /** + * Typedef an iterator class that allows to walk over all nonzero elements + * of a sparsity pattern. + */ + typedef ChunkSparsityPatternIterators::Iterator const_iterator; + + /** + * Typedef an iterator class that allows to walk over all nonzero elements + * of a sparsity pattern. + * + * Since the iterator does not allow to modify the sparsity pattern, this + * type is the same as that for @p const_iterator. + */ + typedef ChunkSparsityPatternIterators::Iterator iterator; /** - * Define a value which is used - * to indicate that a certain - * value in the colnums array - * is unused, i.e. does not - * represent a certain column - * number index. + * Define a value which is used to indicate that a certain value in the + * colnums array is unused, i.e. does not represent a certain column number + * index. * - * Indices with this invalid - * value are used to insert new - * entries to the sparsity - * pattern using the add() member - * function, and are removed when + * Indices with this invalid value are used to insert new entries to the + * sparsity pattern using the add() member function, and are removed when * calling compress(). * - * You should not assume that the - * variable declared here has a - * certain value. The - * initialization is given here - * only to enable the compiler to - * perform some optimizations, - * but the actual value of the - * variable may change over time. + * You should not assume that the variable declared here has a certain + * value. The initialization is given here only to enable the compiler to + * perform some optimizations, but the actual value of the variable may + * change over time. */ - static const unsigned int invalid_entry = SparsityPattern::invalid_entry; + static const size_type invalid_entry = SparsityPattern::invalid_entry; /** - * Initialize the matrix empty, - * that is with no memory - * allocated. This is useful if - * you want such objects as - * member variables in other - * classes. You can make the - * structure usable by calling - * the reinit() function. + * Initialize the matrix empty, that is with no memory allocated. This is + * useful if you want such objects as member variables in other classes. You + * can make the structure usable by calling the reinit() function. */ ChunkSparsityPattern (); @@@ -128,13 -281,12 +285,12 @@@ * * @arg m number of rows * @arg n number of columns - * @arg max_per_row maximum - * number of nonzero entries per row + * @arg max_per_row maximum number of nonzero entries per row */ - ChunkSparsityPattern (const unsigned int m, - const unsigned int n, - const unsigned int max_chunks_per_row, - const unsigned int chunk_size); + ChunkSparsityPattern (const size_type m, + const size_type n, + const size_type max_chunks_per_row, + const size_type chunk_size); /** * @deprecated This constructor is deprecated. Use the version @@@ -152,16 -303,13 +307,13 @@@ * * @arg m number of rows * @arg n number of columns - * - * @arg row_lengths possible - * number of nonzero entries for - * each row. This vector must - * have one entry for each row. + * @arg row_lengths possible number of nonzero entries for each row. This + * vector must have one entry for each row. */ - ChunkSparsityPattern (const unsigned int m, - const unsigned int n, - const std::vector &row_lengths, - const unsigned int chunk_size); + ChunkSparsityPattern (const size_type m, + const size_type n, + const std::vector &row_lengths, + const size_type chunk_size); /** * @deprecated This constructor is deprecated. Use the version @@@ -174,35 -322,27 +326,27 @@@ const bool optimize_diagonal) DEAL_II_DEPRECATED; /** - * Initialize a quadratic matrix - * of dimension n with - * at most max_per_row - * nonzero entries per row. + * Initialize a quadratic matrix of dimension n with at most + * max_per_row nonzero entries per row. * - * This constructor automatically - * enables optimized storage of - * diagonal elements. To avoid - * this, use the constructor - * taking row and column numbers - * separately. + * This constructor automatically enables optimized storage of diagonal + * elements. To avoid this, use the constructor taking row and column + * numbers separately. */ - ChunkSparsityPattern (const unsigned int n, - const unsigned int max_per_row, - const unsigned int chunk_size); + ChunkSparsityPattern (const size_type n, + const size_type max_per_row, + const size_type chunk_size); /** * Initialize a quadratic matrix. * * @arg m number of rows and columns - * - * @arg row_lengths possible - * number of nonzero entries for - * each row. This vector must - * have one entry for each row. + * @arg row_lengths possible number of nonzero entries for each row. This + * vector must have one entry for each row. */ - ChunkSparsityPattern (const unsigned int m, - const std::vector &row_lengths, - const unsigned int chunk_size); + ChunkSparsityPattern (const size_type m, + const std::vector &row_lengths, + const size_type chunk_size); /** * @deprecated This constructor is deprecated. Use the version @@@ -229,20 -366,17 +370,17 @@@ ChunkSparsityPattern &operator = (const ChunkSparsityPattern &); /** - * Reallocate memory and set up data - * structures for a new matrix with - * m rows and n columns, - * with at most max_per_row + * Reallocate memory and set up data structures for a new matrix with m + * rows and n columns, with at most max_per_row * nonzero entries per row. * - * This function simply maps its - * operations to the other - * reinit function. + * This function simply maps its operations to the other reinit + * function. */ - void reinit (const unsigned int m, - const unsigned int n, - const unsigned int max_per_row, - const unsigned int chunk_size); + void reinit (const size_type m, + const size_type n, + const size_type max_per_row, + const size_type chunk_size); /** * @deprecated This function is deprecated. Use the function @@@ -287,20 -414,19 +418,19 @@@ * @deprecated This function is deprecated. Use the function * without the last argument */ - void reinit (const unsigned int m, - const unsigned int n, - const std::vector &row_lengths, - const unsigned int chunk_size, - const bool optimize_diagonal) DEAL_II_DEPRECATED; + void reinit (const size_type m, + const size_type n, + const std::vector &row_lengths, + const size_type chunk_size, + const bool optimize_diagonal) DEAL_II_DEPRECATED; /** - * Same as above, but with a - * VectorSlice argument instead. + * Same as above, but with a VectorSlice argument instead. */ - void reinit (const unsigned int m, - const unsigned int n, - const VectorSlice > &row_lengths, - const unsigned int chunk_size); + void reinit (const size_type m, + const size_type n, + const VectorSlice > &row_lengths, + const size_type chunk_size); /** * @deprecated This function is deprecated. Use the function @@@ -335,84 -453,41 +457,41 @@@ void compress (); /** - * This function can be used as a - * replacement for reinit(), - * subsequent calls to add() and - * a final call to close() if you - * know exactly in advance the - * entries that will form the - * matrix sparsity pattern. - * - * The first two parameters - * determine the size of the - * matrix. For the two last ones, - * note that a sparse matrix can - * be described by a sequence of - * rows, each of which is - * represented by a sequence of - * pairs of column indices and - * values. In the present - * context, the begin() and - * end() parameters designate - * iterators (of forward iterator - * type) into a container, one - * representing one row. The - * distance between begin() - * and end() should therefore - * be equal to - * n_rows(). These iterators - * may be iterators of - * std::vector, - * std::list, pointers into a - * C-style array, or any other - * iterator satisfying the - * requirements of a forward - * iterator. The objects pointed - * to by these iterators - * (i.e. what we get after - * applying operator* or - * operator-> to one of these - * iterators) must be a container - * itself that provides functions - * begin and end - * designating a range of - * iterators that describe the - * contents of one - * line. Dereferencing these - * inner iterators must either - * yield a pair of a size_type - * as column index and a - * value of arbitrary type (such - * a type would be used if we - * wanted to describe a sparse - * matrix with one such object), - * or simply a size_type - * (of we only wanted to describe - * a sparsity pattern). The - * function is able to determine - * itself whether an unsigned - * integer or a pair is what we - * get after dereferencing the - * inner iterators, through some - * template magic. - * - * While the order of the outer - * iterators denotes the - * different rows of the matrix, - * the order of the inner - * iterator denoting the columns - * does not matter, as they are - * sorted internal to this - * function anyway. - * - * Since that all sounds very - * complicated, consider the - * following example code, which - * may be used to fill a sparsity - * pattern: + * This function can be used as a replacement for reinit(), subsequent calls + * to add() and a final call to close() if you know exactly in advance the + * entries that will form the matrix sparsity pattern. + * + * The first two parameters determine the size of the matrix. For the two + * last ones, note that a sparse matrix can be described by a sequence of + * rows, each of which is represented by a sequence of pairs of column + * indices and values. In the present context, the begin() and end() + * parameters designate iterators (of forward iterator type) into a + * container, one representing one row. The distance between begin() and + * end() should therefore be equal to n_rows(). These iterators may be + * iterators of std::vector, std::list, pointers into a + * C-style array, or any other iterator satisfying the requirements of a + * forward iterator. The objects pointed to by these iterators (i.e. what we + * get after applying operator* or operator-> to one of + * these iterators) must be a container itself that provides functions + * begin and end designating a range of iterators that + * describe the contents of one line. Dereferencing these inner iterators + * must either yield a pair of an unsigned integer as column index and a + * value of arbitrary type (such a type would be used if we wanted to + * describe a sparse matrix with one such object), or simply an unsigned + * integer (of we only wanted to describe a sparsity pattern). The function + * is able to determine itself whether an unsigned integer or a pair is what + * we get after dereferencing the inner iterators, through some template + * magic. + * + * While the order of the outer iterators denotes the different rows of the + * matrix, the order of the inner iterator denoting the columns does not + * matter, as they are sorted internal to this function anyway. + * + * Since that all sounds very complicated, consider the following example + * code, which may be used to fill a sparsity pattern: * @code - * std::vector > column_indices (n_rows); - * for (unsigned int row=0; row > column_indices (n_rows); + * for (size_type row=0; rowbegin and - * end (namely - * std::vectors), and the - * inner iterators dereferenced - * yield size_type as - * column indices. Note that we - * could have replaced each of - * the two std::vector - * occurrences by std::list, - * and the inner one by - * std::set as well. - * - * Another example would be as - * follows, where we initialize a - * whole matrix, not only a - * sparsity pattern: + * Note that this example works since the iterators dereferenced yield + * containers with functions begin and end (namely + * std::vectors), and the inner iterators dereferenced yield + * unsigned integers as column indices. Note that we could have replaced + * each of the two std::vector occurrences by std::list, + * and the inner one by std::set as well. + * + * Another example would be as follows, where we initialize a whole matrix, + * not only a sparsity pattern: * @code - * std::vector > entries (n_rows); - * for (unsigned int row=0; row > entries (n_rows); + * for (size_type row=0; rowstd::vector - * could be replaced by - * std::list, and the inner - * std::map - * could be replaced by - * std::vector >, - * or a list or set of such - * pairs, as they all return - * iterators that point to such - * pairs. + * This example works because dereferencing iterators of the inner type + * yields a pair of unsigned integers and a value, the first of which we + * take as column index. As previously, the outer std::vector could + * be replaced by std::list, and the inner std::map could be replaced by std::vector >, or a list or set of such pairs, as they all return + * iterators that point to such pairs. */ template - void copy_from (const unsigned int n_rows, - const unsigned int n_cols, + void copy_from (const size_type n_rows, + const size_type n_cols, const ForwardIterator begin, const ForwardIterator end, - const unsigned int chunk_size); + const size_type chunk_size); /** * @deprecated This function is deprecated. Use the function @@@ -546,101 -617,78 +621,78 @@@ bool empty () const; /** - * Return the chunk size given as - * argument when constructing this - * object. + * Return the chunk size given as argument when constructing this object. */ - unsigned int get_chunk_size () const; + size_type get_chunk_size () const; /** - * Return the maximum number of entries per - * row. Before compression, this equals the - * number given to the constructor, while - * after compression, it equals the maximum - * number of entries actually allocated by - * the user. + * Return the maximum number of entries per row. Before compression, this + * equals the number given to the constructor, while after compression, it + * equals the maximum number of entries actually allocated by the user. */ - unsigned int max_entries_per_row () const; + size_type max_entries_per_row () const; /** - * Add a nonzero entry to the matrix. - * This function may only be called - * for non-compressed sparsity patterns. + * Add a nonzero entry to the matrix. This function may only be called for + * non-compressed sparsity patterns. * - * If the entry already exists, nothing - * bad happens. + * If the entry already exists, nothing bad happens. */ - void add (const unsigned int i, - const unsigned int j); + void add (const size_type i, + const size_type j); /** - * Make the sparsity pattern - * symmetric by adding the - * sparsity pattern of the + * Make the sparsity pattern symmetric by adding the sparsity pattern of the * transpose object. * - * This function throws an - * exception if the sparsity - * pattern does not represent a - * quadratic matrix. + * This function throws an exception if the sparsity pattern does not + * represent a quadratic matrix. */ void symmetrize (); /** - * Return number of rows of this - * matrix, which equals the dimension - * of the image space. + * Return number of rows of this matrix, which equals the dimension of the + * image space. */ - unsigned int n_rows () const; + inline size_type n_rows () const; /** - * Return number of columns of this - * matrix, which equals the dimension - * of the range space. + * Return number of columns of this matrix, which equals the dimension of + * the range space. */ - unsigned int n_cols () const; + inline size_type n_cols () const; /** - * Check if a value at a certain - * position may be non-zero. + * Check if a value at a certain position may be non-zero. */ - bool exists (const unsigned int i, - const unsigned int j) const; + bool exists (const size_type i, + const size_type j) const; /** * Number of entries in a specific row. */ - unsigned int row_length (const unsigned int row) const; + size_type row_length (const size_type row) const; /** - * Compute the bandwidth of the matrix - * represented by this structure. The - * bandwidth is the maximum of $|i-j|$ - * for which the index pair $(i,j)$ - * represents a nonzero entry of the - * matrix. Consequently, the maximum - * bandwidth a $n\times m$ matrix can - * have is $\max\{n-1,m-1\}$. + * Compute the bandwidth of the matrix represented by this structure. The + * bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$ + * represents a nonzero entry of the matrix. Consequently, the maximum + * bandwidth a $n\times m$ matrix can have is $\max\{n-1,m-1\}$. */ - unsigned int bandwidth () const; + size_type bandwidth () const; /** - * Return the number of nonzero elements of - * this matrix. Actually, it returns the - * number of entries in the sparsity - * pattern; if any of the entries should - * happen to be zero, it is counted - * anyway. + * Return the number of nonzero elements of this matrix. Actually, it + * returns the number of entries in the sparsity pattern; if any of the + * entries should happen to be zero, it is counted anyway. * - * This function may only be called if the - * matrix struct is compressed. It does not - * make too much sense otherwise anyway. + * This function may only be called if the matrix struct is compressed. It + * does not make too much sense otherwise anyway. */ - unsigned int n_nonzero_elements () const; + size_type n_nonzero_elements () const; /** - * Return whether the structure is - * compressed or not. + * Return whether the structure is compressed or not. */ bool is_compressed () const; @@@ -826,27 -869,23 +873,23 @@@ //@} private: /** - * Number of rows that this sparsity - * structure shall represent. + * Number of rows that this sparsity structure shall represent. */ - unsigned int rows; + size_type rows; /** - * Number of columns that this sparsity - * structure shall represent. + * Number of columns that this sparsity structure shall represent. */ - unsigned int cols; + size_type cols; /** * The size of chunks. */ - unsigned int chunk_size; + size_type chunk_size; /** - * The reduced sparsity pattern. We store - * only which chunks exist, with each - * chunk a block in the matrix of size - * chunk_size by chunk_size. + * The reduced sparsity pattern. We store only which chunks exist, with each + * chunk a block in the matrix of size chunk_size by chunk_size. */ SparsityPattern sparsity_pattern; @@@ -863,9 -906,312 +910,312 @@@ #ifndef DOXYGEN + namespace ChunkSparsityPatternIterators + { + inline + Accessor:: + Accessor (const ChunkSparsityPattern *sparsity_pattern, + const unsigned int row) + : + sparsity_pattern(sparsity_pattern), + reduced_accessor(row==sparsity_pattern->n_rows() ? + *sparsity_pattern->sparsity_pattern.end() : + *sparsity_pattern->sparsity_pattern. + begin(row/sparsity_pattern->get_chunk_size())), + chunk_row (row==sparsity_pattern->n_rows() ? 0 : + row%sparsity_pattern->get_chunk_size()), + chunk_col (0) + {} + + + + inline + Accessor:: + Accessor (const ChunkSparsityPattern *sparsity_pattern) + : + sparsity_pattern(sparsity_pattern), + reduced_accessor(*sparsity_pattern->sparsity_pattern.end()), + chunk_row (0), + chunk_col (0) + {} + + + + inline + bool + Accessor::is_valid_entry () const + { + return reduced_accessor.is_valid_entry() + && + sparsity_pattern->get_chunk_size()*reduced_accessor.row()+chunk_row < + sparsity_pattern->n_rows() + && + sparsity_pattern->get_chunk_size()*reduced_accessor.column()+chunk_col < + sparsity_pattern->n_cols(); + } + + + + inline + unsigned int + Accessor::row() const + { + Assert (is_valid_entry() == true, ExcInvalidIterator()); + + return sparsity_pattern->get_chunk_size()*reduced_accessor.row() + + chunk_row; + } + + + + inline + unsigned int + Accessor::column() const + { + Assert (is_valid_entry() == true, ExcInvalidIterator()); + + return sparsity_pattern->get_chunk_size()*reduced_accessor.column() + + chunk_col; + } + + + + inline + std::size_t + Accessor::reduced_index() const + { + Assert (is_valid_entry() == true, ExcInvalidIterator()); + + return reduced_accessor.index_within_sparsity; + } + + + + + inline + bool + Accessor::operator == (const Accessor &other) const + { + // no need to check for equality of sparsity patterns as this is done in + // the reduced case already and every ChunkSparsityPattern has its own + // reduced sparsity pattern + return (reduced_accessor == other.reduced_accessor && + chunk_row == other.chunk_row && + chunk_col == other.chunk_col); + } + + + + inline + bool + Accessor::operator < (const Accessor &other) const + { + Assert (sparsity_pattern == other.sparsity_pattern, + ExcInternalError()); + + if (chunk_row != other.chunk_row) + { + if (reduced_accessor.index_within_sparsity == + reduced_accessor.sparsity_pattern->n_nonzero_elements()) + return false; + if (other.reduced_accessor.index_within_sparsity == + reduced_accessor.sparsity_pattern->n_nonzero_elements()) + return true; + + const unsigned int + global_row = sparsity_pattern->get_chunk_size()*reduced_accessor.row() + +chunk_row, + other_global_row = sparsity_pattern->get_chunk_size()* + other.reduced_accessor.row()+other.chunk_row; + if (global_row < other_global_row) + return true; + else if (global_row > other_global_row) + return false; + } + + return (reduced_accessor.index_within_sparsity < + other.reduced_accessor.index_within_sparsity || + (reduced_accessor.index_within_sparsity == + other.reduced_accessor.index_within_sparsity && + chunk_col < other.chunk_col)); + } + + + inline + void + Accessor::advance () + { + const unsigned int chunk_size = sparsity_pattern->get_chunk_size(); + Assert (chunk_row < chunk_size && chunk_col < chunk_size, + ExcIteratorPastEnd()); + Assert (reduced_accessor.row() * chunk_size + chunk_row < + sparsity_pattern->n_rows() + && + reduced_accessor.column() * chunk_size + chunk_col < + sparsity_pattern->n_cols(), + ExcIteratorPastEnd()); + if (chunk_size == 1) + { + reduced_accessor.advance(); + return; + } + + ++chunk_col; + + // end of chunk + if (chunk_col == chunk_size + || + reduced_accessor.column() * chunk_size + chunk_col == + sparsity_pattern->n_cols()) + { + const unsigned int reduced_row = reduced_accessor.row(); + // end of row + if (reduced_accessor.index_within_sparsity + 1 == + reduced_accessor.sparsity_pattern->rowstart[reduced_row+1]) + { + ++chunk_row; + + chunk_col = 0; + + // end of chunk rows or end of matrix + if (chunk_row == chunk_size || + (reduced_row * chunk_size + chunk_row == + sparsity_pattern->n_rows())) + { + chunk_row = 0; + reduced_accessor.advance(); + } + // go back to the beginning of the same reduced row but with + // chunk_row increased by one + else + reduced_accessor.index_within_sparsity = + reduced_accessor.sparsity_pattern->rowstart[reduced_row]; + } + // advance within chunk + else + { + reduced_accessor.advance(); + chunk_col = 0; + } + } + } + + + + inline + Iterator::Iterator (const ChunkSparsityPattern *sparsity_pattern, + const unsigned int row) + : + accessor(sparsity_pattern, row) + {} + + + + inline + Iterator & + Iterator::operator++ () + { + accessor.advance (); + return *this; + } + + + + inline + Iterator + Iterator::operator++ (int) + { + const Iterator iter = *this; + accessor.advance (); + return iter; + } + + + + inline + const Accessor & + Iterator::operator* () const + { + return accessor; + } + + + + inline + const Accessor * + Iterator::operator-> () const + { + return &accessor; + } + + + inline + bool + Iterator::operator == (const Iterator &other) const + { + return (accessor == other.accessor); + } + + + + inline + bool + Iterator::operator != (const Iterator &other) const + { + return ! (accessor == other.accessor); + } + + + inline + bool + Iterator::operator < (const Iterator &other) const + { + return accessor < other.accessor; + } + + } + + + + inline + ChunkSparsityPattern::iterator + ChunkSparsityPattern::begin () const + { + return iterator(this, 0); + } + + + inline + ChunkSparsityPattern::iterator + ChunkSparsityPattern::end () const + { + return iterator(this, n_rows()); + } + + + + inline + ChunkSparsityPattern::iterator + ChunkSparsityPattern::begin (const unsigned int r) const + { + Assert (r + inline void -ChunkSparsityPattern::copy_from (const unsigned int n_rows, - const unsigned int n_cols, +ChunkSparsityPattern::copy_from (const size_type n_rows, + const size_type n_cols, const ForwardIterator begin, const ForwardIterator end, - const unsigned int chunk_size, + const size_type chunk_size, const bool) { copy_from (n_rows, n_cols, begin, end, chunk_size); @@@ -923,27 -1271,21 +1275,21 @@@ template void -ChunkSparsityPattern::copy_from (const unsigned int n_rows, - const unsigned int n_cols, +ChunkSparsityPattern::copy_from (const size_type n_rows, + const size_type n_cols, const ForwardIterator begin, const ForwardIterator end, - const unsigned int chunk_size) + const size_type chunk_size) { - Assert (static_cast(std::distance (begin, end)) == n_rows, + Assert (static_cast(std::distance (begin, end)) == n_rows, ExcIteratorRange (std::distance (begin, end), n_rows)); - // first determine row lengths for - // each row. if the matrix is - // quadratic, then we might have to - // add an additional entry for the - // diagonal, if that is not yet - // present. as we have to call - // compress anyway later on, don't - // bother to check whether that - // diagonal entry is in a certain - // row or not + // first determine row lengths for each row. if the matrix is quadratic, + // then we might have to add an additional entry for the diagonal, if that + // is not yet present. as we have to call compress anyway later on, don't + // bother to check whether that diagonal entry is in a certain row or not const bool is_square = (n_rows == n_cols); - std::vector row_lengths; + std::vector row_lengths; row_lengths.reserve(n_rows); for (ForwardIterator i=begin; i!=end; ++i) row_lengths.push_back (std::distance (i->begin(), i->end()) @@@ -951,17 -1293,16 +1297,16 @@@ (is_square ? 1 : 0)); reinit (n_rows, n_cols, row_lengths, chunk_size); - // now enter all the elements into - // the matrix + // now enter all the elements into the matrix - unsigned int row = 0; + size_type row = 0; typedef typename std::iterator_traits::value_type::const_iterator inner_iterator; for (ForwardIterator i=begin; i!=end; ++i, ++row) { const inner_iterator end_of_row = i->end(); for (inner_iterator j=i->begin(); j!=end_of_row; ++j) { - const unsigned int col + const size_type col - = internal::SparsityPatternTools::get_column_index_from_iterator(*j); + = internal::SparsityPatternTools::get_column_index_from_iterator(*j); Assert (col < n_cols, ExcInvalidIndex(col,n_cols)); add (row, col); diff --cc deal.II/include/deal.II/lac/parallel_vector.h index 4c2dde075a,64cade9c6f..ac46606f6d --- a/deal.II/include/deal.II/lac/parallel_vector.h +++ b/deal.II/include/deal.II/lac/parallel_vector.h @@@ -523,14 -523,14 +523,14 @@@ namespace paralle * are owned locally and for indices not * present at all. */ - bool is_ghost_entry (const types::global_dof_index global_index) const; + bool is_ghost_entry (const size_type global_index) const; /** - * Make the @p Vector class a bit like - * the vector<> class of the C++ - * standard library by returning - * iterators to the start and end of the - * locally owned elements of this vector. + * Make the @p Vector class a bit like the vector<> class of + * the C++ standard library by returning iterators to the start and end + * of the locally owned elements of this vector. + * + * It holds that end() - begin() == local_size(). */ iterator begin (); diff --cc deal.II/include/deal.II/lac/trilinos_block_sparse_matrix.h index 5f295a977a,1550c8a246..f9e8eb4f04 --- a/deal.II/include/deal.II/lac/trilinos_block_sparse_matrix.h +++ b/deal.II/include/deal.II/lac/trilinos_block_sparse_matrix.h @@@ -289,164 -290,26 +290,26 @@@ namespace TrilinosWrapper * elements of this * matrix. */ - unsigned int n_nonzero_elements () const; + size_type n_nonzero_elements () const; /** - * Matrix-vector multiplication: - * let $dst = M*src$ with $M$ - * being this matrix. + * Matrix-vector multiplication: let $dst = M*src$ with $M$ being this + * matrix. The vector types can be block vectors or non-block vectors + * (only if the matrix has only one row or column, respectively), and need + * to define TrilinosWrappers::SparseMatrix::vmult. */ - void vmult (MPI::BlockVector &dst, - const MPI::BlockVector &src) const; - - - /** - * Matrix-vector multiplication: - * let $dst = M*src$ with $M$ - * being this matrix, now applied - * to localized block vectors - * (works only when run on one - * processor). - */ - void vmult (BlockVector &dst, - const BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block column. - */ - void vmult (MPI::BlockVector &dst, - const MPI::Vector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block column, now - * applied to localized vectors - * (works only when run on one - * processor). - */ - void vmult (BlockVector &dst, - const Vector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block row. - */ - void vmult (MPI::Vector &dst, - const MPI::BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block row, now - * applied to localized vectors - * (works only when run on one - * processor). - */ - void vmult (Vector &dst, - const BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block. - */ - void vmult (VectorBase &dst, - const VectorBase &src) const; - - /** - * Matrix-vector multiplication: - * let $dst = M^T*src$ with $M$ - * being this matrix. This - * function does the same as - * vmult() but takes the - * transposed matrix. - */ - void Tvmult (MPI::BlockVector &dst, - const MPI::BlockVector &src) const; - - /** - * Matrix-vector multiplication: - * let $dst = M^T*src$ with $M$ - * being this matrix. This - * function does the same as - * vmult() but takes the - * transposed matrix, now applied - * to localized Trilinos vectors - * (works only when run on one - * processor). - */ - void Tvmult (BlockVector &dst, - const BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block row. - */ - void Tvmult (MPI::BlockVector &dst, - const MPI::Vector &src) const; + template + void vmult (VectorType1 &dst, + const VectorType2 &src) const; /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block row, now - * applied to localized Trilinos - * vectors (works only when run - * on one processor). - */ - void Tvmult (BlockVector &dst, - const Vector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block column. - */ - void Tvmult (MPI::Vector &dst, - const MPI::BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block column, now - * applied to localized Trilinos - * vectors (works only when run - * on one processor). - */ - void Tvmult (Vector &dst, - const BlockVector &src) const; - - /** - * Matrix-vector - * multiplication. Just like the - * previous function, but only - * applicable if the matrix has - * only one block. + * Matrix-vector multiplication: let $dst = M^T*src$ with $M$ being this + * matrix. This function does the same as vmult() but takes the transposed + * matrix. */ - void Tvmult (VectorBase &dst, - const VectorBase &src) const; + template + void Tvmult (VectorType1 &dst, + const VectorType2 &src) const; /** * Compute the residual of an diff --cc deal.II/include/deal.II/lac/trilinos_sparse_matrix.h index 648d4b3cbb,ff56ed065c..9cd050798d --- a/deal.II/include/deal.II/lac/trilinos_sparse_matrix.h +++ b/deal.II/include/deal.II/lac/trilinos_sparse_matrix.h @@@ -3206,16 -3096,23 +3116,23 @@@ namespace TrilinosWrapper last_action = Insert; - int *col_index_ptr; + TrilinosWrappers::types::int_type *col_index_ptr; - TrilinosScalar const *col_value_ptr; + TrilinosScalar *col_value_ptr; - int n_columns; + TrilinosWrappers::types::int_type n_columns; - // If we don't elide zeros, the pointers - // are already available... + TrilinosScalar short_val_array[100]; + int short_index_array[100]; + std::vector long_val_array; + std::vector long_index_array; + + + // If we don't elide zeros, the pointers are already available... need to + // cast to non-const pointers as that is the format taken by Trilinos (but + // we will not modify const data) if (elide_zero_values == false) { - col_index_ptr = (int *)col_indices; + col_index_ptr = (TrilinosWrappers::types::int_type *)col_indices; - col_value_ptr = values; + col_value_ptr = const_cast(values); n_columns = n_cols; } else @@@ -3242,41 -3145,29 +3165,30 @@@ } } - Assert(n_columns <= (int)n_cols, ExcInternalError()); + Assert(n_columns <= (TrilinosWrappers::types::int_type)n_cols, ExcInternalError()); - - col_index_ptr = (TrilinosWrappers::types::int_type *)&column_indices[0]; - col_value_ptr = &column_values[0]; } - // If the calling matrix owns the row to - // which we want to insert values, we - // can directly call the Epetra_CrsMatrix - // input function, which is much faster - // than the Epetra_FECrsMatrix - // function. We distinguish between two - // cases: the first one is when the matrix - // is not filled (i.e., it is possible to - // add new elements to the sparsity pattern), - // and the second one is when the pattern is - // already fixed. In the former case, we - // add the possibility to insert new values, - // and in the second we just replace + // If the calling matrix owns the row to which we want to insert values, + // we can directly call the Epetra_CrsMatrix input function, which is much + // faster than the Epetra_FECrsMatrix function. We distinguish between two + // cases: the first one is when the matrix is not filled (i.e., it is + // possible to add new elements to the sparsity pattern), and the second + // one is when the pattern is already fixed. In the former case, we add + // the possibility to insert new values, and in the second we just replace // data. - if (row_partitioner().MyGID(static_cast(row)) == true) + if (row_partitioner().MyGID(static_cast(row)) == true) { if (matrix->Filled() == false) { - ierr = matrix->Epetra_CrsMatrix::InsertGlobalValues(row, n_columns, - col_value_ptr, - col_index_ptr); + ierr = matrix->Epetra_CrsMatrix::InsertGlobalValues( + static_cast(row), + static_cast(n_columns),const_cast(col_value_ptr), + col_index_ptr); - // When inserting elements, we do - // not want to create exceptions in - // the case when inserting non-local - // data (since that's what we want - // to do right now). + // When inserting elements, we do not want to create exceptions in + // the case when inserting non-local data (since that's what we + // want to do right now). if (ierr > 0) ierr = 0; } @@@ -3438,19 -3319,25 +3342,25 @@@ last_action = Add; - int *col_index_ptr; + TrilinosWrappers::types::int_type *col_index_ptr; - TrilinosScalar const *col_value_ptr; + TrilinosScalar *col_value_ptr; - int n_columns; + TrilinosWrappers::types::int_type n_columns; - // If we don't elide zeros, the pointers - // are already available... + double short_val_array[100]; + int short_index_array[100]; + std::vector long_val_array; + std::vector long_index_array; + + // If we don't elide zeros, the pointers are already available... need to + // cast to non-const pointers as that is the format taken by Trilinos (but + // we will not modify const data) if (elide_zero_values == false) { - col_index_ptr = (int *)col_indices; + col_index_ptr = (TrilinosWrappers::types::int_type *)col_indices; - col_value_ptr = values; + col_value_ptr = const_cast(values); n_columns = n_cols; #ifdef DEBUG - for (unsigned int j=0; j(row)) == true) + if (row_partitioner().MyGID(static_cast(row)) == true) { ierr = matrix->Epetra_CrsMatrix::SumIntoGlobalValues(row, n_columns, - const_cast(col_value_ptr), + col_value_ptr, col_index_ptr); } else { - // When we're at off-processor data, we - // have to stick with the standard - // SumIntoGlobalValues - // function. Nevertheless, the way we - // call it is the fastest one (any other - // will lead to repeated allocation and - // deallocation of memory in order to - // call the function we already use, - // which is very unefficient if writing - // one element at a time). + // When we're at off-processor data, we have to stick with the + // standard SumIntoGlobalValues function. Nevertheless, the way we + // call it is the fastest one (any other will lead to repeated + // allocation and deallocation of memory in order to call the function + // we already use, which is very inefficient if writing one element at + // a time). compressed = false; - ierr = matrix->SumIntoGlobalValues (1, (int *)&row, n_columns, + ierr = matrix->SumIntoGlobalValues (1, + (TrilinosWrappers::types::int_type *)&row, n_columns, col_index_ptr, &col_value_ptr, Epetra_FECrsMatrix::ROW_MAJOR); @@@ -3789,16 -3642,11 +3683,11 @@@ Assert (&src != &dst, ExcSourceEqualsDestination()); Assert (matrix->Filled(), ExcMatrixNotCompressed()); - #ifndef DEAL_II_USE_LARGE_INDEX_TYPE - const int n_global_elements = matrix->DomainMap().NumGlobalElements(); - #else - const long long int n_global_elements = matrix->DomainMap().NumGlobalElements64(); - #endif - - AssertDimension (static_cast(matrix->DomainMap().NumMyElements()), - static_cast(n_global_elements)); - AssertDimension (dst.size(), static_cast(matrix->RangeMap().NumMyElements())); - AssertDimension (src.size(), static_cast(matrix->DomainMap().NumMyElements())); + internal::SparseMatrix::check_vector_map_equality(*matrix, src, dst); - const int dst_local_size = dst.end() - dst.begin(); - AssertDimension (dst_local_size, matrix->RangeMap().NumMyElements()); - const int src_local_size = src.end() - src.begin(); - AssertDimension (src_local_size, matrix->DomainMap().NumMyElements()); ++ const size_type dst_local_size = dst.end() - dst.begin(); ++ AssertDimension (dst_local_size, static_cast(matrix->RangeMap().NumMyElements())); ++ const size_type src_local_size = src.end() - src.begin(); ++ AssertDimension (src_local_size, static_cast(matrix->DomainMap().NumMyElements())); Epetra_Vector tril_dst (View, matrix->RangeMap(), dst.begin()); Epetra_Vector tril_src (View, matrix->DomainMap(), @@@ -3862,16 -3668,11 +3709,11 @@@ Assert (&src != &dst, ExcSourceEqualsDestination()); Assert (matrix->Filled(), ExcMatrixNotCompressed()); - #ifndef DEAL_II_USE_LARGE_INDEX_TYPE - const int n_global_elements = matrix->DomainMap().NumGlobalElements(); - #else - const long long int n_global_elements = matrix->DomainMap().NumGlobalElements64(); - #endif - - AssertDimension (static_cast(matrix->DomainMap().NumMyElements()), - static_cast(n_global_elements)); - AssertDimension (dst.size(), static_cast(matrix->DomainMap().NumMyElements())); - AssertDimension (src.size(), static_cast(matrix->RangeMap().NumMyElements())); + internal::SparseMatrix::check_vector_map_equality(*matrix, dst, src); - const int dst_local_size = dst.end() - dst.begin(); - AssertDimension (dst_local_size, matrix->DomainMap().NumMyElements()); - const int src_local_size = src.end() - src.begin(); - AssertDimension (src_local_size, matrix->RangeMap().NumMyElements()); ++ const size_type dst_local_size = dst.end() - dst.begin(); ++ AssertDimension (dst_local_size, static_cast(matrix->DomainMap().NumMyElements())); ++ const size_type src_local_size = src.end() - src.begin(); ++ AssertDimension (src_local_size, static_cast(matrix->RangeMap().NumMyElements())); Epetra_Vector tril_dst (View, matrix->DomainMap(), dst.begin()); Epetra_Vector tril_src (View, matrix->RangeMap(), diff --cc deal.II/include/deal.II/lac/trilinos_vector_base.h index 2740b3c509,f9c2145a90..aed6e15110 --- a/deal.II/include/deal.II/lac/trilinos_vector_base.h +++ b/deal.II/include/deal.II/lac/trilinos_vector_base.h @@@ -272,10 -267,12 +272,12 @@@ namespace TrilinosWrapper * C standard libraries * vector<...> class. */ - typedef TrilinosScalar value_type; - typedef TrilinosScalar real_type; - typedef dealii::types::global_dof_index size_type; - typedef internal::VectorReference reference; + typedef TrilinosScalar value_type; + typedef TrilinosScalar real_type; - typedef std::size_t size_type; ++ typedef dealii::types::global_dof_index size_type; + typedef value_type *iterator; + typedef const value_type *const_iterator; + typedef internal::VectorReference reference; typedef const internal::VectorReference const_reference; /** @@@ -662,8 -659,35 +664,35 @@@ * elements sits on another * process. */ - TrilinosScalar el (const unsigned int index) const; + TrilinosScalar el (const size_type index) const; + /** + * Make the Vector class a bit like the vector<> class of + * the C++ standard library by returning iterators to the start and end + * of the locally owned elements of this vector. The ordering of local elements corresponds to the one given + * + * It holds that end() - begin() == local_size(). + */ + iterator begin (); + + /** + * Return constant iterator to the start of the locally owned elements + * of the vector. + */ + const_iterator begin () const; + + /** + * Return an iterator pointing to the element past the end of the array + * of locally owned entries. + */ + iterator end (); + + /** + * Return a constant iterator pointing to the element past the end of + * the array of the locally owned entries. + */ + const_iterator end () const; + /** * A collective set operation: * instead of setting individual diff --cc deal.II/include/deal.II/numerics/vector_tools.templates.h index 29d8821b42,3dec6628b3..575a416a2e --- a/deal.II/include/deal.II/numerics/vector_tools.templates.h +++ b/deal.II/include/deal.II/numerics/vector_tools.templates.h @@@ -4267,11 -4278,10 +4278,10 @@@ namespace VectorTool "to imposing Dirichlet values on the vector-valued " "quantity.")); - std::vector face_dofs; + std::vector face_dofs; - // create FE and mapping - // collections for all elements in - // use by this DoFHandler + // create FE and mapping collections for all elements in use by this + // DoFHandler hp::FECollection fe_collection (dof_handler.get_fe()); hp::MappingCollection mapping_collection; for (unsigned int i=0; i 0, ExcInvalidNumber (chunk_size)); - // simply map this function to the - // other @p{reinit} function + // simply map this function to the other @p{reinit} function - const std::vector row_lengths (m, max_per_row); + const std::vector row_lengths (m, max_per_row); reinit (m, n, row_lengths, chunk_size); } @@@ -201,31 -199,30 +199,30 @@@ ChunkSparsityPattern::reinit this->chunk_size = chunk_size; - // pass down to the necessary information - // to the underlying object. we need to - // calculate how many chunks we need: we - // need to round up (m/chunk_size) and - // (n/chunk_size). rounding up in integer - // arithmetic equals + // pass down to the necessary information to the underlying object. we need + // to calculate how many chunks we need: we need to round up (m/chunk_size) + // and (n/chunk_size). rounding up in integer arithmetic equals // ((m+chunk_size-1)/chunk_size): - const unsigned int m_chunks = (m+chunk_size-1) / chunk_size, - n_chunks = (n+chunk_size-1) / chunk_size; + const size_type m_chunks = (m+chunk_size-1) / chunk_size, + n_chunks = (n+chunk_size-1) / chunk_size; - // compute the maximum number of chunks in - // each row. the passed array denotes the - // number of entries in each row of the big - // matrix -- in the worst case, these are - // all in independent chunks, so we have to - // calculate it as follows (as an example: - // let chunk_size==2, - // row_lengths={2,2,...}, and entries in - // row zero at columns {0,2} and for row - // one at {4,6} --> we'll need 4 chunks for - // the first chunk row!) : + // compute the maximum number of chunks in each row. the passed array + // denotes the number of entries in each row of the big matrix -- in the + // worst case, these are all in independent chunks, so we have to calculate + // it as follows (as an example: let chunk_size==2, row_lengths={2,2,...}, + // and entries in row zero at columns {0,2} and for row one at {4,6} --> + // we'll need 4 chunks for the first chunk row!) : std::vector chunk_row_lengths (m_chunks, 0); - for (unsigned int i=0; i 0, ExcInvalidNumber (chunk_size)); - // count number of entries per row, then - // initialize the underlying sparsity + // count number of entries per row, then initialize the underlying sparsity // pattern - std::vector entries_per_row (csp.n_rows(), 0); - for (unsigned int row = 0; row entries_per_row (csp.n_rows(), 0); + for (size_type row = 0; rowcolumn() != sparsity_pattern.n_cols() - 1) + n += chunk_size; + else + n += (n_cols() % chunk_size); + return n; + } } @@@ -472,11 -522,10 +527,10 @@@ ChunkSparsityPattern::n_nonzero_element && (n_cols() % chunk_size == 0)) { - // columns align with chunks, but - // not rows + // columns align with chunks, but not rows - unsigned int n = sparsity_pattern.n_nonzero_elements() * - chunk_size * - chunk_size; + size_type n = sparsity_pattern.n_nonzero_elements() * + chunk_size * + chunk_size; n -= (sparsity_pattern.n_rows() * chunk_size - n_rows()) * sparsity_pattern.row_length(sparsity_pattern.n_rows()-1) * chunk_size; @@@ -485,14 -534,13 +539,13 @@@ else { - // if columns don't align, then - // just iterate over all chunks and - // see what this leads to. follow the advice in the documentation of - // the sparsity pattern iterators to do the loop over individual rows, + // if columns don't align, then just iterate over all chunks and see + // what this leads to. follow the advice in the documentation of the + // sparsity pattern iterators to do the loop over individual rows, // rather than all elements - unsigned int n = 0; + size_type n = 0; - for (unsigned int row = 0; row < sparsity_pattern.n_rows(); ++row) + for (size_type row = 0; row < sparsity_pattern.n_rows(); ++row) { SparsityPattern::const_iterator p = sparsity_pattern.begin(row); for (; p!=sparsity_pattern.end(row); ++p) @@@ -566,26 -610,22 +615,22 @@@ ChunkSparsityPattern::print_gnuplot (st AssertThrow (out, ExcIO()); - // for each entry in the underlying - // sparsity pattern, repeat everything + // for each entry in the underlying sparsity pattern, repeat everything // chunk_size x chunk_size times - for (unsigned int i=0; i(i*chunk_size+e) << std::endl; @@@ -595,16 -635,13 +640,13 @@@ -unsigned int +ChunkSparsityPattern::size_type ChunkSparsityPattern::bandwidth () const { - // calculate the bandwidth from that of the - // underlying sparsity pattern. note that - // even if the bandwidth of that is zero, - // then the bandwidth of the chunky pattern - // is chunk_size-1, if it is 1 then the - // chunky pattern has - // chunk_size+(chunk_size-1), etc + // calculate the bandwidth from that of the underlying sparsity + // pattern. note that even if the bandwidth of that is zero, then the + // bandwidth of the chunky pattern is chunk_size-1, if it is 1 then the + // chunky pattern has chunk_size+(chunk_size-1), etc // // we'll cut it off at max(n(),m()) return std::min (sparsity_pattern.bandwidth()*chunk_size @@@ -686,8 -721,12 +726,12 @@@ ChunkSparsityPattern::memory_consumptio // explicit instantiations template + void ChunkSparsityPattern::copy_from (const SparsityPattern &, + const unsigned int, + const bool); + template void ChunkSparsityPattern::copy_from (const CompressedSparsityPattern &, - const unsigned int, + const size_type , const bool); template void ChunkSparsityPattern::copy_from (const CompressedSetSparsityPattern &, @@@ -695,11 -734,39 +739,39 @@@ const bool); template void ChunkSparsityPattern::copy_from (const CompressedSimpleSparsityPattern &, - const unsigned int, + const size_type , const bool); template + void ChunkSparsityPattern::create_from + (const unsigned int, + const unsigned int, + const SparsityPattern &, + const unsigned int, + const bool); + template + void ChunkSparsityPattern::create_from + (const unsigned int, + const unsigned int, + const CompressedSparsityPattern &, + const unsigned int, + const bool); + template + void ChunkSparsityPattern::create_from + (const unsigned int, + const unsigned int, + const CompressedSetSparsityPattern &, + const unsigned int, + const bool); + template + void ChunkSparsityPattern::create_from + (const unsigned int, + const unsigned int, + const CompressedSimpleSparsityPattern &, + const unsigned int, + const bool); + template void ChunkSparsityPattern::copy_from (const FullMatrix &, - const unsigned int, + const size_type , const bool); template void ChunkSparsityPattern::copy_from (const FullMatrix &, diff --cc deal.II/source/numerics/matrix_tools.cc index e20a1334c4,77fa2af43d..e0bd90bbd2 --- a/deal.II/source/numerics/matrix_tools.cc +++ b/deal.II/source/numerics/matrix_tools.cc @@@ -206,9 -206,10 +206,10 @@@ namespace MatrixCreato struct CopyData { - std::vector dof_indices; + std::vector dof_indices; FullMatrix cell_matrix; dealii::Vector cell_rhs; + const ConstraintMatrix *constraints; }; } diff --cc tests/trilinos/slowness_04.cc index 8dc2febce6,4048a0e734..9c3b472da3 --- a/tests/trilinos/slowness_04.cc +++ b/tests/trilinos/slowness_04.cc @@@ -93,8 -92,8 +93,8 @@@ void test ( matrix.set(global, global+N, rand()); } } - matrix.compress (); + matrix.compress (VectorOperation::insert); - + // then do a single matrix-vector // multiplication with subsequent formation // of the matrix norm