From: mcbride Date: Wed, 15 Feb 2012 16:15:55 +0000 (+0000) Subject: tut 44 near completion, final touches needed X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=2dc0f89775a87dc4ad61ba743d16b692aeaa4344;p=dealii-svn.git tut 44 near completion, final touches needed git-svn-id: https://svn.dealii.org/trunk@25083 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-44/doc/results.dox b/deal.II/examples/step-44/doc/results.dox index c972e2d7f7..829c0626c6 100644 --- a/deal.II/examples/step-44/doc/results.dox +++ b/deal.II/examples/step-44/doc/results.dox @@ -1,6 +1,5 @@

Results

-... diff --git a/deal.II/examples/step-44/parameters.prm b/deal.II/examples/step-44/parameters.prm index 2932d03d22..6d22e5314d 100644 --- a/deal.II/examples/step-44/parameters.prm +++ b/deal.II/examples/step-44/parameters.prm @@ -23,13 +23,13 @@ end subsection Linear solver # Linear solver iterations (multiples of the system matrix size) - set Max iteration multiplier = 2 + set Max iteration multiplier = 1 # Linear solver residual (scaled by residual norm) set Residual = 1e-6 # SSOR preconditioner relaxation value - set SSOR Relaxation = 0.6 + set SSOR Relaxation = 0.65 # Type of solver used to solve the linear system set Solver type = CG @@ -50,7 +50,7 @@ subsection Nonlinear solver set Max iterations Newton-Raphson = 10 # Displacement error tolerance - set Tolerance displacement = 1.0e-3 + set Tolerance displacement = 1.0e-6 # Force residual tolerance set Tolerance force = 1.0e-9 diff --git a/deal.II/examples/step-44/step-44.cc b/deal.II/examples/step-44/step-44.cc index 58b1a3b82f..d49ffc99ed 100644 --- a/deal.II/examples/step-44/step-44.cc +++ b/deal.II/examples/step-44/step-44.cc @@ -90,10 +90,10 @@ struct FESystem { void FESystem::declare_parameters(ParameterHandler &prm) { prm.enter_subsection("Finite element system"); { - prm.declare_entry("Polynomial degree", "1", Patterns::Integer(), + prm.declare_entry("Polynomial degree", "2", Patterns::Integer(), "Displacement system polynomial order"); - prm.declare_entry("Quadrature order", "2", Patterns::Integer(), + prm.declare_entry("Quadrature order", "3", Patterns::Integer(), "Gauss quadrature order"); } prm.leave_subsection(); @@ -130,10 +130,10 @@ void Geometry::declare_parameters(ParameterHandler &prm) { prm.declare_entry("Global refinement", "2", Patterns::Integer(), "Global refinement level"); - prm.declare_entry("Grid scale", "1.0", Patterns::Double(), + prm.declare_entry("Grid scale", "1e-3", Patterns::Double(), "Global grid scaling factor"); - prm.declare_entry("Pressure ratio p/p0", "40", + prm.declare_entry("Pressure ratio p/p0", "100", Patterns::Selection("20|40|60|80|100"), "Ratio of applied pressure to reference pressure"); } @@ -164,13 +164,14 @@ struct Materials { parse_parameters(ParameterHandler &prm); }; +// ToDo: add a range check void Materials::declare_parameters(ParameterHandler &prm) { prm.enter_subsection("Material properties"); { - prm.declare_entry("Poisson's ratio", "0.49", Patterns::Double(), + prm.declare_entry("Poisson's ratio", "0.4999", Patterns::Double(), "Poisson's ratio"); - prm.declare_entry("Shear modulus", "1.0e6", Patterns::Double(), + prm.declare_entry("Shear modulus", "80.194e6", Patterns::Double(), "Shear modulus"); } prm.leave_subsection(); @@ -211,11 +212,11 @@ void LinearSolver::declare_parameters(ParameterHandler &prm) { prm.declare_entry( "Max iteration multiplier", - "2", + "1", Patterns::Double(), "Linear solver iterations (multiples of the system matrix size)"); - prm.declare_entry("SSOR Relaxation", "0.6", Patterns::Double(), + prm.declare_entry("SSOR Relaxation", "0.65", Patterns::Double(), "SSOR preconditioner relaxation value"); } prm.leave_subsection(); @@ -258,7 +259,7 @@ void NonlinearSolver::declare_parameters(ParameterHandler &prm) { prm.declare_entry("Tolerance force", "1.0e-9", Patterns::Double(), "Force residual tolerance"); - prm.declare_entry("Tolerance displacement", "1.0e-3", + prm.declare_entry("Tolerance displacement", "1.0e-6", Patterns::Double(), "Displacement error tolerance"); } prm.leave_subsection(); @@ -530,16 +531,16 @@ public: virtual ~Time(void) { } - const double current(void) const { + double current(void) const { return time_current; } - const double end(void) const { + double end(void) const { return time_end; } - const double get_delta_t(void) const { + double get_delta_t(void) const { return delta_t; } - const unsigned int get_timestep(void) const { + unsigned int get_timestep(void) const { return timestep; } void increment(void) { @@ -616,9 +617,6 @@ public: // include a coupled of checks on the input data Assert(det_F > 0, ExcInternalError()); - // ToDo: is this Assert a good idea? - Assert(J_tilde > 0, ExcInternalError()); - } // Determine the Kirchhoff stress @@ -749,9 +747,6 @@ public: } // We first create a material object. - // This object could, potentially, be shared among QPH objects - // but this could cause data-race issues when assembling the system matrix. - // ToDo: This issue of the data race needs to be clarified void setup_lqp(Parameters::AllParameters & parameters) { // Create an instance of a neo-Hookean material @@ -1177,7 +1172,7 @@ struct Solid::ScratchData_K { void reset(void) { const unsigned int n_q_points = Nx.size(); const unsigned int n_dofs_per_cell = Nx[0].size(); - for (unsigned int q_point = 0; q_point < Nx.size(); ++q_point) { + for (unsigned int q_point = 0; q_point < n_q_points; ++q_point) { Assert( Nx[q_point].size() == n_dofs_per_cell, ExcInternalError()); Assert( grad_Nx[q_point].size() == n_dofs_per_cell, ExcInternalError()); @@ -1334,8 +1329,7 @@ struct Solid::PerTaskData_UQPH { // quadrature points. template struct Solid::ScratchData_UQPH { - // ToDo: i'm not sure I understand the use of the & - // ToD: can we make this static? + const BlockVector & solution_total; std::vector > solution_grads_u_total; @@ -1366,7 +1360,6 @@ struct Solid::ScratchData_UQPH { } void reset(void) { - // ToDo: Is this necessary? Won't the call to fe_values.get_gradient overwrite this data? const unsigned int n_q_points = solution_grads_u_total.size(); for (unsigned int q = 0; q < n_q_points; ++q) { solution_grads_u_total[q] = 0.0; @@ -1637,7 +1630,6 @@ void Solid::update_qph_incremental_one_cell( Assert(scratch.solution_values_J_total.size() == n_q_points, ExcInternalError()); - // ToDo: this is probably not needed scratch.reset(); // Firstly we need to find the values and gradients at quadrature points @@ -1803,12 +1795,12 @@ void Solid::print_conv_footer(void) { // which is then normalised by the current volume // $\int_{\Omega_0} J ~\textrm{d}V = \int_\Omega ~\textrm{d}v$. template +// ToDO: return the ratio of the reference and current volumes double Solid::get_error_dil(void) { double dil_L2_error = 0.0; vol_current = 0.0; - FEValues fe_values_ref(fe, qf_cell, update_JxW_values); for (typename Triangulation::active_cell_iterator cell = @@ -1834,7 +1826,7 @@ double Solid::get_error_dil(void) { }Assert(vol_current > 0, ExcInternalError()); } - return (std::sqrt(dil_L2_error)) / vol_current; + return (std::sqrt(dil_L2_error)); } // Determine the true residual error for the problem.