From: guido Date: Sat, 18 Dec 2004 16:54:12 +0000 (+0000) Subject: QGaussN removed X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=2e73ff36265784b835129834c49390345e972198;p=dealii-svn.git QGaussN removed git-svn-id: https://svn.dealii.org/trunk@9819 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-10/step-10.cc b/deal.II/examples/step-10/step-10.cc index 4bc0bf1e4d..0b02fc6c84 100644 --- a/deal.II/examples/step-10/step-10.cc +++ b/deal.II/examples/step-10/step-10.cc @@ -4,7 +4,7 @@ /* $Id$ */ /* Version: $Name$ */ /* */ -/* Copyright (C) 2001, 2002, 2003 by the deal.II authors */ +/* Copyright (C) 2001, 2002, 2003, 2004 by the deal.II authors */ /* */ /* This file is subject to QPL and may not be distributed */ /* without copyright and license information. Please refer */ @@ -310,8 +310,8 @@ void compute_pi_by_area () // For the numerical quadrature on // all cells we employ a quadrature // rule of sufficiently high - // degree. We choose QGauss4 that - // is of order 8, to be sure that + // degree. We choose QGauss that + // is of order 8 (4 points), to be sure that // the errors due to numerical // quadrature are of higher order // than the order (maximal 6) that @@ -329,7 +329,7 @@ void compute_pi_by_area () // computations, but could as well // have used any quadrature formula // of like order instead. - const QGauss4 quadrature; + const QGauss quadrature(4); // Now start by looping over // polynomial mapping degrees=1..4: @@ -550,7 +550,7 @@ void compute_pi_by_perimeter () // as we will integrate over // (boundary) lines rather than // over cells. - const QGauss4 quadrature; + const QGauss quadrature(4); // We loop over all degrees, create // the Triangulation, the Boundary, diff --git a/deal.II/examples/step-11/step-11.cc b/deal.II/examples/step-11/step-11.cc index 308228b075..02f1388810 100644 --- a/deal.II/examples/step-11/step-11.cc +++ b/deal.II/examples/step-11/step-11.cc @@ -4,7 +4,7 @@ /* $Id$ */ /* Version: $Name$ */ /* */ -/* Copyright (C) 2001, 2002, 2003 by the deal.II authors */ +/* Copyright (C) 2001, 2002, 2003, 2004 by the deal.II authors */ /* */ /* This file is subject to QPL and may not be distributed */ /* without copyright and license information. Please refer */ @@ -450,22 +450,6 @@ void LaplaceProblem::assemble_and_solve () // formula above computing // ``gauss_degree''. // - // Note also, that we have used a - // class called ``QGauss''. By now, - // we have only used ``QGauss4'', - // or the like, which implement a - // Gauss quadrature rule of fixed - // order. The ``QGauss'' class is - // more general, taking a parameter - // which indicates of which degree - // it shall be; for small degrees, - // the object then parallels - // objects of type ``QGaussR'' with - // fixed R, but it also provides - // quadrature rules of higher - // degree which are no longer - // hard-coded in the library. - // Since the generation of the body // force contributions to the right // hand side vector was so simple, diff --git a/deal.II/examples/step-12/step-12.cc b/deal.II/examples/step-12/step-12.cc index 425c02cdc1..2db49857ea 100644 --- a/deal.II/examples/step-12/step-12.cc +++ b/deal.II/examples/step-12/step-12.cc @@ -589,8 +589,8 @@ class DGMethod // formulae for the cell and the // face terms of the // discretization. - const QGauss4 quadrature; - const QGauss4 face_quadrature; + const QGauss quadrature; + const QGauss face_quadrature; // And there are two solution // vectors, that store the @@ -620,8 +620,8 @@ DGMethod::DGMethod () // different degrees. fe (1), dof_handler (triangulation), - quadrature (), - face_quadrature (), + quadrature (4), + face_quadrature (4), dg () {} diff --git a/deal.II/examples/step-13/step-13.cc b/deal.II/examples/step-13/step-13.cc index 3ad079e200..1a8fdf2697 100644 --- a/deal.II/examples/step-13/step-13.cc +++ b/deal.II/examples/step-13/step-13.cc @@ -1766,7 +1766,7 @@ namespace LaplaceSolver { Vector estimated_error_per_cell (this->triangulation->n_active_cells()); KellyErrorEstimator::estimate (this->dof_handler, - QGauss3(), + QGauss(3), typename FunctionMap::type(), this->solution, estimated_error_per_cell); @@ -2005,7 +2005,7 @@ void solve_problem (const std::string &solver_name) GridGenerator::hyper_cube (triangulation, -1, 1); triangulation.refine_global (2); const FE_Q fe(1); - const QGauss4 quadrature; + const QGauss quadrature(4); const RightHandSide rhs_function; const Solution boundary_values; diff --git a/deal.II/examples/step-14/step-14.cc b/deal.II/examples/step-14/step-14.cc index c06942c9d6..8849e93501 100644 --- a/deal.II/examples/step-14/step-14.cc +++ b/deal.II/examples/step-14/step-14.cc @@ -1078,7 +1078,7 @@ namespace LaplaceSolver { Vector estimated_error_per_cell (this->triangulation->n_active_cells()); KellyErrorEstimator::estimate (this->dof_handler, - QGauss3(), + QGauss(3), typename FunctionMap::type(), this->solution, estimated_error_per_cell); @@ -2051,7 +2051,7 @@ namespace DualFunctional // formula, have abbreviations // for the number of quadrature // points and shape functions... - QGauss4 quadrature; + QGauss quadrature(4); FEValues fe_values (dof_handler.get_fe(), quadrature, update_gradients | update_q_points | diff --git a/deal.II/examples/step-15/step-15.cc b/deal.II/examples/step-15/step-15.cc index 74dc3d7aca..85a2ecbc05 100644 --- a/deal.II/examples/step-15/step-15.cc +++ b/deal.II/examples/step-15/step-15.cc @@ -411,7 +411,7 @@ void MinimizationProblem::assemble_step () // is a polynomial of sixth order. Thus, // the appropriate quadrature formula is // the one we have chosen here. - QGauss4 quadrature_formula; + QGauss quadrature_formula(4); FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | update_gradients | @@ -1265,7 +1265,7 @@ MinimizationProblem::energy (const DoFHandler &dof_handler, // that the integrand is a polynomial of // degree six, so a 4-point Gauss formula // is appropriate: - QGauss4 quadrature_formula; + QGauss quadrature_formula(4); FEValues fe_values (dof_handler.get_fe(), quadrature_formula, UpdateFlags(update_values | update_gradients | diff --git a/deal.II/examples/step-16/step-16.cc b/deal.II/examples/step-16/step-16.cc index c701b3c890..fdfbde66b0 100644 --- a/deal.II/examples/step-16/step-16.cc +++ b/deal.II/examples/step-16/step-16.cc @@ -194,7 +194,7 @@ void LaplaceProblem::setup_system () template void LaplaceProblem::assemble_system () { - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | @@ -301,7 +301,7 @@ void LaplaceProblem::assemble_system () template void LaplaceProblem::assemble_multigrid () { - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | diff --git a/deal.II/examples/step-17/step-17.cc b/deal.II/examples/step-17/step-17.cc index 4043f2e8eb..b46231fd77 100644 --- a/deal.II/examples/step-17/step-17.cc +++ b/deal.II/examples/step-17/step-17.cc @@ -593,7 +593,7 @@ void ElasticProblem::assemble_system () // from step-8. Note that we still use the // deal.II full matrix and vector types for // the local systems. - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | update_gradients | @@ -1157,7 +1157,7 @@ void ElasticProblem::refine_grid () // (i.e. the one indicating the subdomain): Vector local_error_per_cell (triangulation.n_active_cells()); KellyErrorEstimator::estimate (dof_handler, - QGauss2(), + QGauss(2), typename FunctionMap::type(), localized_solution, local_error_per_cell, diff --git a/deal.II/examples/step-3/step-3.cc b/deal.II/examples/step-3/step-3.cc index fe9469c87e..aa83fc01dd 100644 --- a/deal.II/examples/step-3/step-3.cc +++ b/deal.II/examples/step-3/step-3.cc @@ -344,7 +344,7 @@ void LaplaceProblem::assemble_system () // the matrix entries are quadratic // (in 1D), this is sufficient. The // same holds for 2D. - QGauss2<2> quadrature_formula; + QGauss<2> quadrature_formula(2); // And we initialize the object // which we have briefly talked // about above. It needs to be told diff --git a/deal.II/examples/step-4/step-4.cc b/deal.II/examples/step-4/step-4.cc index 5e0b2059d0..9e1be30a08 100644 --- a/deal.II/examples/step-4/step-4.cc +++ b/deal.II/examples/step-4/step-4.cc @@ -339,7 +339,7 @@ void LaplaceProblem::make_grid_and_dofs () template void LaplaceProblem::assemble_system () { - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); // We wanted to have a non-constant // right hand side, so we use an diff --git a/deal.II/examples/step-5/step-5.cc b/deal.II/examples/step-5/step-5.cc index de73e2a711..93d2697133 100644 --- a/deal.II/examples/step-5/step-5.cc +++ b/deal.II/examples/step-5/step-5.cc @@ -398,7 +398,7 @@ void LaplaceProblem::assemble_system () // object will be used for this: const Coefficient coefficient; - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); FEValues fe_values (fe, quadrature_formula, UpdateFlags(update_values | diff --git a/deal.II/examples/step-6/step-6.cc b/deal.II/examples/step-6/step-6.cc index 9d10f5b0fb..dda25221d7 100644 --- a/deal.II/examples/step-6/step-6.cc +++ b/deal.II/examples/step-6/step-6.cc @@ -453,7 +453,7 @@ void LaplaceProblem::assemble_system () // we use consist, a Gauss formula // with three points in each // direction is sufficient. - QGauss3 quadrature_formula; + QGauss quadrature_formula(3); // The ``FEValues'' object // automatically adjusts the @@ -735,7 +735,7 @@ void LaplaceProblem::refine_grid () // integrates polynomials up to // order 5 exactly.) KellyErrorEstimator::estimate (dof_handler, - QGauss3(), + QGauss(3), neumann_boundary, solution, estimated_error_per_cell); diff --git a/deal.II/examples/step-7/step-7.cc b/deal.II/examples/step-7/step-7.cc index 00620db9c2..01f571c7b6 100644 --- a/deal.II/examples/step-7/step-7.cc +++ b/deal.II/examples/step-7/step-7.cc @@ -767,8 +767,8 @@ void LaplaceProblem::assemble_system () // a quadrature rule for the faces: // it is simply a quadrature rule // for one dimension less! - QGauss3 quadrature_formula; - QGauss3 face_quadrature_formula; + QGauss quadrature_formula(3); + QGauss face_quadrature_formula(3); // For simpler use later on, we // alias the number of quadrature // points to local variables: @@ -1114,7 +1114,7 @@ void LaplaceProblem::refine_grid () typename FunctionMap::type neumann_boundary; KellyErrorEstimator::estimate (dof_handler, - QGauss3(), + QGauss(3), neumann_boundary, solution, estimated_error_per_cell); @@ -1179,7 +1179,7 @@ void LaplaceProblem::process_solution (const unsigned int cycle) solution, Solution(), difference_per_cell, - QGauss3(), + QGauss(3), VectorTools::L2_norm); // Finally, we want to get the // global L2 norm. This can of @@ -1198,7 +1198,7 @@ void LaplaceProblem::process_solution (const unsigned int cycle) solution, Solution(), difference_per_cell, - QGauss3(), + QGauss(3), VectorTools::H1_seminorm); const double H1_error = difference_per_cell.l2_norm(); diff --git a/deal.II/examples/step-8/step-8.cc b/deal.II/examples/step-8/step-8.cc index 78b955bf5b..3ae01d2ef1 100644 --- a/deal.II/examples/step-8/step-8.cc +++ b/deal.II/examples/step-8/step-8.cc @@ -434,7 +434,7 @@ void ElasticProblem::assemble_system () // formula does not need // modification since we still deal // with bilinear functions. - QGauss2 quadrature_formula; + QGauss quadrature_formula(2); // Also, the ``FEValues'' objects // takes care of everything for us // (or better: it does not really @@ -802,7 +802,7 @@ void ElasticProblem::refine_grid () typename FunctionMap::type neumann_boundary; KellyErrorEstimator::estimate (dof_handler, - QGauss2(), + QGauss(2), neumann_boundary, solution, estimated_error_per_cell); @@ -944,8 +944,9 @@ void ElasticProblem::run () // twice before we first // solve on it. The reason // is the following: we use - // the ``Gauss2'' - // quadrature formula for + // the ``Gauss'' + // quadrature formula with + // two points in each direction for // integration of the right // hand side; that means // that there are four diff --git a/deal.II/examples/step-9/step-9.cc b/deal.II/examples/step-9/step-9.cc index c0dff4e1cc..20441af60e 100644 --- a/deal.II/examples/step-9/step-9.cc +++ b/deal.II/examples/step-9/step-9.cc @@ -969,8 +969,8 @@ assemble_system_interval (const typename DoFHandler::active_cell_iterator & // elements, Gauss formulae with // two points in each space // direction are sufficient. - QGauss2 quadrature_formula; - QGauss2 face_quadrature_formula; + QGauss quadrature_formula(2); + QGauss face_quadrature_formula(2); // Finally, we need objects of type // ``FEValues'' and