From: Wolfgang Bangerth Date: Thu, 24 Jun 2010 13:18:38 +0000 (+0000) Subject: Properly align formula. X-Git-Tag: v8.0.0~5955 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=2fa64409177020fbea7d0081f0e115d9adacb93f;p=dealii.git Properly align formula. git-svn-id: https://svn.dealii.org/trunk@21314 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-45/doc/intro.dox b/deal.II/examples/step-45/doc/intro.dox index 47e175733f..96a5c1d76e 100644 --- a/deal.II/examples/step-45/doc/intro.dox +++ b/deal.II/examples/step-45/doc/intro.dox @@ -30,13 +30,13 @@ left and right parts of the boundary are identified. Let $\Omega=(0,1)^2$ and consider the problem @f{align*} -\Delta u &= - \cos(2\pi x)e^{-2x}\cos(2\pi y)e^{-2y} \qquad &\text{in }\Omega + \cos(2\pi x)e^{-2x}\cos(2\pi y)e^{-2y} \qquad &&\text{in }\Omega \\ - u(x,0) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(bottom boundary)} + u(x,0) &= 0 \qquad &&\text{for }x\in(0,1)\qquad &&\text{(bottom boundary)} \\ - u(x,1) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(top boundary)} + u(x,1) &= 0 \qquad &&\text{for }x\in(0,1)\qquad &&\text{(top boundary)} \\ - u(0,y) &= u(1,y) \qquad &\text{for }y\in(0,1) + u(0,y) &= u(1,y) \qquad &&\text{for }y\in(0,1) \qquad && \text{(left and right boundaries)} @f} Note that the source term is not symmetric and so the solution would not be