From: Guido Kanschat Date: Mon, 28 Apr 2003 14:52:25 +0000 (+0000) Subject: first changes can compile X-Git-Tag: v8.0.0~16649 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=381354b2ff8389da5c202b5b3b91ab4986ba159b;p=dealii.git first changes can compile git-svn-id: https://svn.dealii.org/trunk@7488 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-16/Makefile b/deal.II/examples/step-16/Makefile index 186ce42a92..4e5a318cec 100644 --- a/deal.II/examples/step-16/Makefile +++ b/deal.II/examples/step-16/Makefile @@ -1,5 +1,8 @@ # $Id$ +# Protect the file from being made automatically as long as it is not tested +default: + @echo Example not ready for compiling # For the small projects Makefile, you basically need to fill in only # four fields. diff --git a/deal.II/examples/step-16/step-16.cc b/deal.II/examples/step-16/step-16.cc index 1ac610a46b..5c189f6643 100644 --- a/deal.II/examples/step-16/step-16.cc +++ b/deal.II/examples/step-16/step-16.cc @@ -24,9 +24,9 @@ #include #include #include -#include #include #include +#include #include #include #include @@ -34,73 +34,24 @@ #include #include #include - - // This one is new. We want to read a - // triangulation from disk, and the - // class which does this is declared - // in the following file: -#include - - // We will use a circular domain, and - // the object describing the boundary - // of it comes from this file: -#include - - // This is C++ ... + // These are the new include files + // required for multi-level methods. + // First, the file defining the + // multigrid method itself. +#include + // The DoFHandler is replaced by an + // MGDoFHandler which is defined + // here. +#include +#include + + // Then, we need some pre-made + // transfer routines between grids. +#include + + // This is C++ ... see step 5 for + // further comments. #include - // ... and this is too: We will - // convert integers to strings using - // the C++ stringstream class - // ``ostringstream''. One annoying - // complication arises here in that - // the classes ``std::istringstream'' - // and ``std::ostringstream'' (with - // these names) have not been part of - // standard libraries of C++ - // compilers for long. They have only - // been part of C++ compilers since - // around the time the C++ standard - // was made in 1999. For example, the - // gcc compiler up to and including - // version 2.95.2 did not have them, - // but instead provided classes - // ``istrstream'' and ``ostrstream'' - // with a similar, but nevertheless - // slightly different - // interface. Furthermore, they were - // declared in the include file - // ``'', while the new - // standards conforming classes are - // declared in ``''. Many - // other compilers followed the gcc - // scheme, so whenever we want to - // support versions of compilers that - // appeared before approximately - // 2000/2001, we have to support - // these old classes. - // - // Since we do want to support these - // compilers, the ``./configure'' - // script you run as the very first - // step of installing the library - // determines whether the compiler - // you want to use supports the new - // classes, or whether we have to - // fall back on the old ones. If the - // new classes are supported, then - // the preprocessor variable - // ``HAVE_STD_STRINGSTREAM'' is set - // in the ``base/config.h'' include - // file, that all include files in - // the library also include. Since we - // have included quite a number of - // files from the library at this - // point, the definition or - // non-definition of this - // preprocessor variable can now be - // used to decide whether old or new - // header names have to be used to - // import string stream classes: #ifdef HAVE_STD_STRINGSTREAM # include #else @@ -108,16 +59,17 @@ #endif - // The main class is mostly as in the - // previous example. The most visible - // change is that the function - // ``make_grid_and_dofs'' has been - // removed, since making of the grid - // is now done in the ``run'' - // function and the rest of its - // functionality now is in - // ``setup_system''. Apart from this, - // everything is as before. + // This class is based on the same + // class in step 5. Remark that we + // replaced the DoFHandler by + // MGDoFHandler. since this inherits + // fron DoFHandler, the new object + // incorporates the old functionality + // plus the new functions for degrees + // of freedom on different + // levels. Furthermore, we added + // MultiLevelObjects for sparsity + // patterns and matrices. template class LaplaceProblem { @@ -133,230 +85,65 @@ class LaplaceProblem Triangulation triangulation; FE_Q fe; - DoFHandler dof_handler; + MGDoFHandler mg_dof_handler; SparsityPattern sparsity_pattern; SparseMatrix system_matrix; + MGLevelObject mg_sparsity; + MGLevelObject > mg_matrices; + Vector solution; Vector system_rhs; }; - - // In this example, we want to use a - // variable coefficient in the - // elliptic operator. Of course, the - // suitable object is a Function, as - // we have used it for the right hand - // side and boundary values in the - // last example. We will use it - // again, but we implement another - // function ``value_list'' which - // takes a list of points and returns - // the values of the function at - // these points as a list. The reason - // why such a function is reasonable - // although we can get all the - // information from the ``value'' - // function as well will be explained - // below when assembling the matrix. - // - // The need to declare a seemingly - // useless default constructor exists - // here just as in the previous - // example. -template -class Coefficient : public Function -{ - public: - Coefficient () : Function() {}; - - virtual double value (const Point &p, - const unsigned int component = 0) const; - - virtual void value_list (const std::vector > &points, - std::vector &values, - const unsigned int component = 0) const; -}; - - - - // This is the implementation of the - // coefficient function for a single - // point. We let it return 20 if the - // distance to the point of origin is - // less than 0.5, and 1 otherwise: -template -double Coefficient::value (const Point &p, - const unsigned int) const -{ - if (p.square() < 0.5*0.5) - return 20; - else - return 1; -} - - - - // And this is the function that - // returns the value of the - // coefficient at a whole list of - // points at once. Of course, the - // values are the same as if we would - // ask the ``value'' function. -template -void Coefficient::value_list (const std::vector > &points, - std::vector &values, - const unsigned int component) const -{ - // Use n_q_points as an - // abbreviation for the number of - // points for which function values - // are requested: - const unsigned int n_points = points.size(); - - // Now, of course the size of the - // output array (``values'') must - // be the same as that of the input - // array (``points''), and we could - // simply assume that. However, in - // practice more than 90 per cent - // of programming errors are - // invalid function parameters such - // as invalid array sizes, etc, so - // we should try to make sure that - // the parameters are valid. For - // this, the Assert macro is a good - // means, since it asserts that the - // condition which is given as - // first argument is valid, and if - // not throws an exception (its - // second argument) which will - // usually terminate the program - // giving information where the - // error occured and what the - // reason was. This generally - // reduces the time to find - // programming errors dramatically - // and we have found assertions an - // invaluable means to program - // fast. - // - // On the other hand, all these - // checks (there are more than 2000 - // of them in the library) should - // not slow down the program too - // much, which is why the Assert - // macro is only used in debug mode - // and expands to nothing if in - // optimized mode. Therefore, while - // you test your program and debug - // it, the assertions will tell you - // where the problems are, and once - // your program is stable you can - // switch off debugging and the - // program will run without the - // assertions and at maximum speed. - // - // Here, as has been said above, we - // would like to make sure that the - // size of the two arrays is equal, - // and if not throw an - // exception. Since the following - // test is rather frequent for the - // classes derived from - // ``Function'', that class - // declares an exception - // ``ExcDimensionMismatch'' which - // takes the sizes of two vectors - // and prints some output in case - // the condition is violated: - Assert (values.size() == n_points, - ExcDimensionMismatch (values.size(), n_points)); - // Since examples are not very good - // if they do not demonstrate their - // point, we will show how to - // trigger this exception at the - // end of the main program, and - // what output results from this - // (see the ``Results'' section of - // this example program). You will - // certainly notice that the output - // is quite well suited to quickly - // find what the problem is and - // what parameters are expected. An - // additional plus is that if the - // program is run inside a - // debugger, it will stop at the - // point where the exception is - // triggered, so you can go up the - // call stack to immediately find - // the place where the the array - // with the wrong size was set up. - - // While we're at it, we can do - // another check: the coefficient - // is a scalar, but the Function - // class also represents - // vector-valued function. A scalar - // function must therefore be - // considered as a vector-valued - // function with only one - // component, so the only valid - // component for which a user might - // ask is zero (we always count - // from zero). The following - // assertion checks this. (The - // ``1'' is denotes the number of - // components that this function - // has.) - Assert (component == 0, - ExcIndexRange (component, 0, 1)); - - for (unsigned int i=0; i LaplaceProblem::LaplaceProblem () : fe (1), - dof_handler (triangulation) + mg_dof_handler (triangulation) {} - // This is the function - // ``make_grid_and_dofs'' from the - // previous example, minus the - // generation of the grid. Everything - // else is unchanged. + // This is the function of step 5 + // augmented by the setup of the + // multi-level matrices in the end. template void LaplaceProblem::setup_system () { - dof_handler.distribute_dofs (fe); + mg_dof_handler.distribute_dofs (fe); std::cout << " Number of degrees of freedom: " - << dof_handler.n_dofs() + << mg_dof_handler.n_dofs() << std::endl; - sparsity_pattern.reinit (dof_handler.n_dofs(), - dof_handler.n_dofs(), - dof_handler.max_couplings_between_dofs()); - DoFTools::make_sparsity_pattern (dof_handler, sparsity_pattern); + sparsity_pattern.reinit (mg_dof_handler.n_dofs(), + mg_dof_handler.n_dofs(), + mg_dof_handler.max_couplings_between_dofs()); + DoFTools::make_sparsity_pattern (mg_dof_handler, sparsity_pattern); sparsity_pattern.compress(); system_matrix.reinit (sparsity_pattern); - solution.reinit (dof_handler.n_dofs()); - system_rhs.reinit (dof_handler.n_dofs()); + solution.reinit (mg_dof_handler.n_dofs()); + system_rhs.reinit (mg_dof_handler.n_dofs()); + + // The multi-level objects are + // resized to hold matrices for + // every level. The coarse level is + // zero (this is mandatory right + // now but may change in a future + // revision). Remark, that the + // finest level is nlevels-1. + const unsigned int nlevels = triangulation.n_levels(); + mg_sparsity.resize(0, nlevels-1); + mg_matrices.resize(0, nlevels-1); + + for (unsigned int level=0;level::setup_system () template void LaplaceProblem::assemble_system () { - // This time, we will again use a - // constant right hand side - // function, but a variable - // coefficient. The following - // object will be used for this: - const Coefficient coefficient; - QGauss2 quadrature_formula; FEValues fe_values (fe, quadrature_formula, @@ -414,18 +194,8 @@ void LaplaceProblem::assemble_system () std::vector local_dof_indices (dofs_per_cell); - // Below, we will ask the - // Coefficient class to compute the - // values of the coefficient at all - // quadrature points on one cell at - // once. For this, we need some - // space to store the values in, - // which we use the following - // variable for: - std::vector coefficient_values (n_q_points); - - typename DoFHandler::active_cell_iterator cell = dof_handler.begin_active(), - endc = dof_handler.end(); + typename DoFHandler::active_cell_iterator cell = mg_dof_handler.begin_active(), + endc = mg_dof_handler.end(); for (; cell!=endc; ++cell) { cell_matrix.clear (); @@ -438,29 +208,6 @@ void LaplaceProblem::assemble_system () // constructor using the update // flags. fe_values.reinit (cell); - - // There is one more thing: in - // this example, we want to use - // a non-constant - // coefficient. In the previous - // example, we have called the - // ``value'' function of the - // right hand side object for - // each quadrature - // point. Unfortunately, that - // is a virtual function, so - // calling it is relatively - // expensive. Therefore, we use - // a function of the ``Function'' - // class which returns the - // values at all quadrature - // points at once; that - // function is still virtual, - // but it needs to be computed - // once per cell only, not once - // in the inner loop: - coefficient.value_list (fe_values.get_quadrature_points(), - coefficient_values); // It should be noted that the // creation of the // coefficient_values object is @@ -486,17 +233,15 @@ void LaplaceProblem::assemble_system () for (unsigned int i=0; i::assemble_system () // Again use zero boundary values: std::map boundary_values; - VectorTools::interpolate_boundary_values (dof_handler, + VectorTools::interpolate_boundary_values (mg_dof_handler, 0, ZeroFunction(), boundary_values); @@ -599,7 +344,7 @@ void LaplaceProblem::output_results (const unsigned int cycle) const { DataOut data_out; - data_out.attach_dof_handler (dof_handler); + data_out.attach_dof_handler (mg_dof_handler); data_out.add_data_vector (solution, "solution"); data_out.build_patches (); @@ -804,102 +549,7 @@ void LaplaceProblem::run () // with the data in the file: if (cycle == 0) { - GridIn grid_in; - grid_in.attach_triangulation (triangulation); - std::ifstream input_file("circle-grid.inp"); - // We would now like to - // read the file. However, - // the input file is only - // for a two-dimensional - // triangulation, while - // this function is a - // template for arbitrary - // dimension. Since this is - // only a demonstration - // program, we will not use - // different input files - // for the different - // dimensions, but rather - // kill the whole program - // if we are not in 2D: - Assert (dim==2, ExcInternalError()); - // ExcInternalError is a - // globally defined - // exception, which may be - // thrown whenever - // something is terribly - // wrong. Usually, one - // would like to use more - // specific exceptions, and - // particular in this case - // one would of course try - // to do something else if - // ``dim'' is not equal to - // two, e.g. create a grid - // using library - // functions. Aborting a - // program is usually not a - // good idea and assertions - // should really only be - // used for exceptional - // cases which should not - // occur, but might due to - // stupidity of the - // programmer, user, or - // someone else. The - // situation above is not a - // very clever use of - // Assert, but again: this - // is a tutorial and it - // might be worth to show - // what not to do, after - // all. - - // We can now actually read - // the grid. It is in UCD - // (unstructured cell data) - // format (but the ending - // of the ``UCD''-file is - // ``inp''), as supported - // as input format by the - // AVS Explorer (a - // visualization program), - // for example: - grid_in.read_ucd (input_file); - // If you like to use - // another input format, - // you have to use an other - // ``grid_in.read_xxx'' - // function. (See the - // documentation of the - // ``GridIn'' class to find - // out what input formats - // are presently - // supported.) - - // The grid in the file - // describes a - // circle. Therefore we - // have to use a boundary - // object which tells the - // triangulation where to - // put new points on the - // boundary when the grid - // is refined. This works - // in the same way as in - // the first example. Note - // that the - // HyperBallBoundary - // constructor takes two - // parameters, the center - // of the ball and the - // radius, but that their - // default (the origin and - // 1.0) are the ones which - // we would like to use - // here. - static const HyperBallBoundary boundary; - triangulation.set_boundary (0, boundary); + // Generate grid here! } // If this is not the first // cycle, then simply refine