From: Wolfgang Bangerth Date: Mon, 18 Jul 2005 19:01:33 +0000 (+0000) Subject: Implement inversion of a 3x3x3x3 tensor. X-Git-Tag: v8.0.0~13402 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=3861c033a2ecdcdf8d2a6ebe3fdfb4a4589fc7a8;p=dealii.git Implement inversion of a 3x3x3x3 tensor. git-svn-id: https://svn.dealii.org/trunk@11164 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/source/symmetric_tensor.cc b/deal.II/base/source/symmetric_tensor.cc new file mode 100644 index 0000000000..2ecfc291e8 --- /dev/null +++ b/deal.II/base/source/symmetric_tensor.cc @@ -0,0 +1,56 @@ +//--------------------------------------------------------------------------- +// $Id$ +// Version: $Name$ +// +// Copyright (C) 2005 by the deal.II authors +// +// This file is subject to QPL and may not be distributed +// without copyright and license information. Please refer +// to the file deal.II/doc/license.html for the text and +// further information on this license. +// +//--------------------------------------------------------------------------- + + +#include +#include + +template <> +SymmetricTensor<4,3> +invert (const SymmetricTensor<4,3> &t) +{ + SymmetricTensor<4,3> tmp; + + // this function follows the exact same + // scheme as the 2d case, except that + // hardcoding the inverse of a 6x6 matrix + // is pretty wasteful. instead, we use the + // Gauss-Jordan algorithm implemented for + // FullMatrix + FullMatrix m(6,6); + for (unsigned int i=0; i<6; ++i) + for (unsigned int j=0; j<6; ++j) + m(i,j) = t.data[i][j]; + m.gauss_jordan (); + + // copy back and scale rows and + // columns. the mult matrix here is diag[1, + // 1, 1, 1/2, 1/2, 1/2] + for (unsigned int i=0; i<3; ++i) + for (unsigned int j=0; j<3; ++j) + tmp.data[i][j] = m(i,j); + + for (unsigned int i=3; i<6; ++i) + for (unsigned int j=0; j<3; ++j) + tmp.data[i][j] = m(i,j) / 2; + + for (unsigned int i=0; i<3; ++i) + for (unsigned int j=3; j<6; ++j) + tmp.data[i][j] = m(i,j) / 2; + + for (unsigned int i=3; i<6; ++i) + for (unsigned int j=3; j<6; ++j) + tmp.data[i][j] = m(i,j) / 4; + + return tmp; +}