From: Wolfgang Bangerth Date: Sun, 12 Apr 2009 04:00:25 +0000 (+0000) Subject: Move things in the LaplaceKernel class into a namespace LaplaceKernel. X-Git-Tag: v8.0.0~7875 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=397b295158a41630e8d3722c19e99c7ac1048b3f;p=dealii.git Move things in the LaplaceKernel class into a namespace LaplaceKernel. git-svn-id: https://svn.dealii.org/trunk@18590 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-34/step-34.cc b/deal.II/examples/step-34/step-34.cc index 7e6d544d4d..bcc37c7d48 100644 --- a/deal.II/examples/step-34/step-34.cc +++ b/deal.II/examples/step-34/step-34.cc @@ -59,8 +59,105 @@ using namespace dealii; + // The following two functions are the actual calculations of the + // single and double layer potential kernels, that is G and Grad + // G. They are well defined only if the vector $R = y-x$ is + // different from zero. + // + // Whenever the integration is performed with the singularity + // inside the given cell, then a special quadrature formula is + // used that allows one to integrate arbitrary functions against a + // singular weight on the reference cell. + // + // There are two options when the integral is singular. One could + // take into account the singularity inside the quadrature formula + // as a weigthing function, or one could use a quadrature formula + // that is taylored to integrate singular objects, but where the + // actual weighting function is one. The use of the first method + // requires the user to provide a "desingularized" single and + // double layer potentials which can then be integrated on the + // given cell. When the @p factor_out_singularity parameter is set + // to true, then the computed kernels do not conatain the singular + // factor, which is included in the quadrature formulas as a + // weighting function. This works best in two dimension, where the + // singular integrals are integrals along a segment of a + // logarithmic singularity. + // + // These integrals are somewhat delicate, because inserting a + // factor Jx in the variable of integration does not result only + // in a factor J appearing as a constant factor on the entire + // integral, but also on an additional integral to be added, that + // contains the logarithm of J. For this reason in two dimensions + // we opt for the desingularized kernel, and use the QGaussLogR + // quadrature formula, that takes care of integrating the correct + // weight for us. + // + // In the three dimensional case the singular integral is taken + // care of using the QGaussOneOverR quadrature formula. We could + // use the desingularized kernel here as well, but this would + // require us to be careful about the different scaling of r in + // the reference cell and in real space. The quadrature formula + // uses as weight 1/r in local coordinates, while we need to + // integrate 1/R in real coordinates. A factor of r/R has to be + // introduced in the quadrature formula. This can be done + // manually, or we simply calculate the standard kernels and then + // use a desingularized quadrature formula, i.e., one which is + // taylored for singular integrals, but whose weight is 1 instead + // of the singularity. + // + // Notice that the QGaussLog quadrature formula is made to + // integrate f(x)ln|x-x0|, but the kernel for two dimensional + // problems has the opposite sign. This is taken care of by + // switching the sign of the two dimensional desingularized + // kernel. + // + // The last argument to both functions is simply ignored in three + // dimensions. +namespace LaplaceKernel +{ template -class LaplaceKernel; +double single_layer(const Point &R, + bool factor_out_2d_singularity = false) { + switch(dim) { + case 2: + if(factor_out_2d_singularity == true) + return -1./(2*numbers::PI); + else + return (-std::log(R.norm()) / (2*numbers::PI) ); + break; + case 3: + return (1./( R.norm()*4*numbers::PI ) ); + break; + default: + Assert(false, ExcInternalError()); + return 0.; + break; + } + return 0.; +} + + + +template +Point double_layer(const Point &R, + bool factor_out_2d_singularity = false) { + switch(dim) { + case 2: + if (factor_out_2d_singularity) + return Point(); + else + return R / (-2*numbers::PI * R.square()); + case 3: + return R / ( -4*numbers::PI * R.square()*R.norm() ); + + default: + Assert(false, ExcInternalError()); + break; + } + return Point(); +} +} + template @@ -239,71 +336,6 @@ private: -template -class LaplaceKernel -{ -public: - // The following two functions are the actual calculations of the - // single and double layer potential kernels, that is G and Grad - // G. They are well defined only if the vector $R = y-x$ is - // different from zero. - // - // Whenever the integration is performed with the singularity - // inside the given cell, then a special quadrature formula is - // used that allows one to integrate arbitrary functions against a - // singular weight on the reference cell. - // - // There are two options when the integral is singular. One could - // take into account the singularity inside the quadrature formula - // as a weigthing function, or one could use a quadrature formula - // that is taylored to integrate singular objects, but where the - // actual weighting function is one. The use of the first method - // requires the user to provide a "desingularized" single and - // double layer potentials which can then be integrated on the - // given cell. When the @p factor_out_singularity parameter is set - // to true, then the computed kernels do not conatain the singular - // factor, which is included in the quadrature formulas as a - // weighting function. This works best in two dimension, where the - // singular integrals are integrals along a segment of a - // logarithmic singularity. - // - // These integrals are somewhat delicate, because inserting a - // factor Jx in the variable of integration does not result only - // in a factor J appearing as a constant factor on the entire - // integral, but also on an additional integral to be added, that - // contains the logarithm of J. For this reason in two dimensions - // we opt for the desingularized kernel, and use the QGaussLogR - // quadrature formula, that takes care of integrating the correct - // weight for us. - // - // In the three dimensional case the singular integral is taken - // care of using the QGaussOneOverR quadrature formula. We could - // use the desingularized kernel here as well, but this would - // require us to be careful about the different scaling of r in - // the reference cell and in real space. The quadrature formula - // uses as weight 1/r in local coordinates, while we need to - // integrate 1/R in real coordinates. A factor of r/R has to be - // introduced in the quadrature formula. This can be done - // manually, or we simply calculate the standard kernels and then - // use a desingularized quadrature formula, i.e., one which is - // taylored for singular integrals, but whose weight is 1 instead - // of the singularity. - // - // Notice that the QGaussLog quadrature formula is made to - // integrate f(x)ln|x-x0|, but the kernel for two dimensional - // problems has the opposite sign. This is taken care of by - // switching the sign of the two dimensional desingularized - // kernel. - // - // The last argument to both funcitons is simply ignored in three - // dimensions. - double single_layer(const Point &R, - bool factor_out_2d_singularity = false); - Point double_layer(const Point &R, - bool factor_out_2d_singularity = false); -}; - - // The constructor initializes the variuous object in the same way of // finite element problems. The only new ingredient here is the // ParsedFunction object, which needs, at construction time, the @@ -438,47 +470,6 @@ void BEMProblem::read_parameters (const std::string filename) { } -template -double LaplaceKernel::single_layer(const Point &R, - bool factor_out_2d_singularity) { - switch(dim) { - case 2: - if(factor_out_2d_singularity == true) - return -1./(2*numbers::PI); - else - return (-std::log(R.norm()) / (2*numbers::PI) ); - break; - case 3: - return (1./( R.norm()*4*numbers::PI ) ); - break; - default: - Assert(false, ExcInternalError()); - return 0.; - break; - } - return 0.; -} - - - -template -Point LaplaceKernel::double_layer(const Point &R, - bool factor_out_2d_singularity) { - switch(dim) { - case 2: - if (factor_out_2d_singularity) - return Point(); - else - return R / (-2*numbers::PI * R.square()); - case 3: - return R / ( -4*numbers::PI * R.square()*R.norm() ); - - default: - Assert(false, ExcInternalError()); - break; - } - return Point(); -} template void BEMProblem::read_domain() { @@ -608,9 +599,6 @@ void BEMProblem::assemble_system() { // the matrix in the global row i. Vector local_matrix_row_i(fe.dofs_per_cell); - // The kernel. - LaplaceKernel kernel; - Point R; // The index i runs on the collocation points, which are the @@ -668,13 +656,13 @@ void BEMProblem::assemble_system() { // cell. R = q_points[q] - support_points[i]; - system_rhs(i) += ( kernel.single_layer(R) * + system_rhs(i) += ( LaplaceKernel::single_layer(R) * normal_wind * fe_v.JxW(q) ); for(unsigned int j=0; j::assemble_system() { normal_wind += (singular_cell_wind[q](d)* singular_normals[q][d]); - system_rhs(i) += ( kernel.single_layer(R, is_singular) * + system_rhs(i) += ( LaplaceKernel::single_layer(R, is_singular) * normal_wind * fe_v_singular.JxW(q) ); for(unsigned int j=0; j::interpolate() { std::vector normal_wind(n_q_points); std::vector > local_wind(n_q_points, Vector(dim) ); - LaplaceKernel kernel; Point R; @@ -920,10 +907,10 @@ void BEMProblem::interpolate() { R = q_points[q] - external_support_points[i]; - external_phi(i) += ( ( kernel.single_layer(R) * + external_phi(i) += ( ( LaplaceKernel::single_layer(R) * normal_wind[q] + // - (kernel.double_layer(R) * + (LaplaceKernel::double_layer(R) * normals[q] ) * local_phi[q] ) * fe_v.JxW(q) );