From: Wolfgang Bangerth Date: Thu, 24 Jun 2010 01:42:12 +0000 (+0000) Subject: Fix mathematical description. X-Git-Tag: v8.0.0~5964 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=39ba988fe059bcff96dc04a676d1a985837ad27e;p=dealii.git Fix mathematical description. git-svn-id: https://svn.dealii.org/trunk@21305 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-45/doc/intro.dox b/deal.II/examples/step-45/doc/intro.dox index 92e860f95f..06415e6554 100644 --- a/deal.II/examples/step-45/doc/intro.dox +++ b/deal.II/examples/step-45/doc/intro.dox @@ -32,11 +32,12 @@ consider the problem -\Delta u &= \pi^2\sin(\pi x)\sin(\pi y) \qquad &\text{in }\Omega \\ - u(0,y) &= 0 \qquad &\text{for }y\in(0,1) + u(x,0) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(bottom boundary)} \\ - u(1,y) &= 0 \qquad &\text{for }y\in(0,1) + u(x,1) &= 0 \qquad &\text{for }x\in(0,1)\qquad &&\text{(top boundary)} \\ - u(x,0) &= u(x,1) \qquad &\text{for }x\in(0,1) + u(0,y) &= u(1,y) \qquad &\text{for }y\in(0,1) + \qquad && \text{(left and right boundaries)} @f} The way one has to see these periodic boundary conditions $u(x,0) = u(x,1)$ is