From: guido Date: Fri, 9 Jan 2004 12:21:14 +0000 (+0000) Subject: Doc for doxygen X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=3b3dbbdaeb75c3019deb380b03b8450ef70a7bf3;p=dealii-svn.git Doc for doxygen git-svn-id: https://svn.dealii.org/trunk@8294 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/include/base/polynomial_space.h b/deal.II/base/include/base/polynomial_space.h index a361da5637..b837533f08 100644 --- a/deal.II/base/include/base/polynomial_space.h +++ b/deal.II/base/include/base/polynomial_space.h @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 2000, 2001, 2002, 2003 by the deal.II authors +// Copyright (C) 2000, 2001, 2002, 2003, 2004 by the deal.II authors // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -28,10 +28,12 @@ * Representation of the space of polynomials of degree at most n in * higher dimensions. * - * Given a vector of @p{n} one-dimensional polynomials @p{P0} to @p{Pn}, - * where @p{Pi} has degree @p{i}, this class generates all polynomials - * of the form @p{ Pijk(x,y,z) = Pi(x)Pj(y)Pk(z)}, where the sum of - * @p{i}, @p{j} and @p{k} is less than or equal @p{n}. + * Given a vector of n one-dimensional polynomials + * P0 to Pn, where + * Pi has degree i, this class generates all + * polynomials of the form Pijk(x,y,z) = + * Pi(x)Pj(y)Pk(z), where the sum + * of i, j and k is less than or equal n. * * @author Guido Kanschat, 2002, Wolfgang Bangerth, 2003 */ @@ -40,19 +42,18 @@ class PolynomialSpace { public: /** - * Constructor. @p{pols} is a + * Constructor. pols is a * vector of pointers to * one-dimensional polynomials - * and will be copied into the - * member variable - * @p{polynomials}. The static + * and will be copied into a + * private member variable. The static * type of the template argument - * @p{pols} needs to be + * pols needs to be * convertible to - * @p{Polynomial}, + * Polynomials::Polynomial@, * i.e. should usually be a * derived class of - * @p{Polynomial}. + * Polynomials::Polynomial@. */ template PolynomialSpace (const std::vector &pols); @@ -61,11 +62,11 @@ class PolynomialSpace * Computes the value and the * first and second derivatives * of each polynomial at - * @p{unit_point}. + * unit_point. * * The size of the vectors must - * either be equal @p{0} or equal - * @p{n()}. In the first case, + * either be equal 0 or equal + * n(). In the first case, * the function will not compute * these values, i.e. you * indicate what you want to have @@ -76,9 +77,9 @@ class PolynomialSpace * derivatives of all polynomials * then use this function, rather * than using any of the - * @p{compute_value}, - * @p{compute_grad} or - * @p{compute_grad_grad} + * compute_value(), + * compute_grad() or + * compute_grad_grad() * functions, see below, in a * loop over all polynomials. */ @@ -89,31 +90,31 @@ class PolynomialSpace /** * Computes the value of the - * @p{i}th polynomial at - * @p{unit_point}. + * ith polynomial at + * unit_point. * - * Consider using @p{compute} instead. + * Consider using compute() instead. */ double compute_value (const unsigned int i, const Point &p) const; /** * Computes the gradient of the - * @p{i}th polynomial at - * @p{unit_point}. + * ith polynomial at + * unit_point. * - * Consider using @p{compute} instead. + * Consider using compute() instead. */ Tensor<1,dim> compute_grad (const unsigned int i, const Point &p) const; /** * Computes the second derivative - * (grad_grad) of the @p{i}th + * (grad_grad) of the ith * polynomial at - * @p{unit_point}. + * unit_point. * - * Consider using @p{compute} instead. + * Consider using compute() instead. */ Tensor<2,dim> compute_grad_grad (const unsigned int i, const Point &p) const; @@ -122,12 +123,12 @@ class PolynomialSpace * Return the number of * polynomials spanning the space * represented by this - * class. Here, if @p{N} is the + * class. Here, if N is the * number of one-dimensional * polynomials given, then the * result of this function is - * @p{N} in 1d, @p{N(N+1)/2} in - * 2d, and @p{N(N+1)(N+2)/6 in + * N in 1d, N(N+1)/2 in + * 2d, and N(N+1)(N+2)/6 in * 3d. */ unsigned int n () const; @@ -154,7 +155,7 @@ class PolynomialSpace private: /** - * Copy of the vector @p{pols} of + * Copy of the vector pols of * polynomials given to the * constructor. */ @@ -162,7 +163,7 @@ class PolynomialSpace /** * Store the precomputed value - * which the @p{n()} function + * which the n() function * returns. */ const unsigned int n_pols; @@ -170,11 +171,11 @@ class PolynomialSpace /** * Compute numbers in x, y and z * direction. Given an index - * @p{n} in the d-dimensional + * n in the d-dimensional * polynomial space, compute the * indices i,j,k such that - * @p{p_n(x,y,z) = - * p_i(x)p_j(y)p_k(z)}. + * pn(x,y,z) = + * pi(x)pj(y)pk(z). */ void compute_index (const unsigned int n, unsigned int (&index)[dim]) const; @@ -187,6 +188,7 @@ class PolynomialSpace static unsigned int compute_n_pols (const unsigned int n); }; +/// @if NoDoc /* -------------- declaration of explicit specializations --- */ @@ -232,6 +234,6 @@ PolynomialSpace::degree() const return polynomials.size(); } - +/// @endif #endif