From: janssen Date: Tue, 21 Sep 2010 10:05:56 +0000 (+0000) Subject: added documentation, removed function for the standard eigenvalue X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=3bdaae8adfcd07d3cae165302e9186c127875892;p=dealii-svn.git added documentation, removed function for the standard eigenvalue problem git-svn-id: https://svn.dealii.org/trunk@22100 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/lac/include/lac/arpack_solver.h b/deal.II/lac/include/lac/arpack_solver.h index 0b518d26ef..b8ad6d34bd 100644 --- a/deal.II/lac/include/lac/arpack_solver.h +++ b/deal.II/lac/include/lac/arpack_solver.h @@ -21,6 +21,42 @@ DEAL_II_NAMESPACE_OPEN +/** + * Interface for using ARPACK. ARPACK is a collection of Fortran77 + * subroutines designed to solve large scale eigenvalue problems. + * Here we interface to the routines dnaupd and dneupd of ARPACK. + * The package is designed to compute a few eigenvalues and + * corresponding eigenvectors of a general n by n matrix A. It is + * most appropriate for large sparse matrices A. + * + * In this class we make use of the method applied to the + * generalized eigenspectrum problem $(A-\lambda B)x=0$, for + * $x\neq0$; where $A$ is a system matrix, $B$ is a mass matrix, + * and $\lambda, x$ are a set of eigenvalues and eigenvectors + * respectively. + * + * The ArpackSolver can be used in application codes in the + * following way: + @verbatim + SolverControl solver_control (1000, 1e-9); + ArpackSolver (solver_control); + system.solve (A, B, lambda, x, size_of_spectrum); + @endverbatim + * for the generalized eigenvalue problem $Ax=B\lambda x$, where + * the variable const unsigned int size_of_spectrum + * tells ARPACK the number of eigenvector/eigenvalue pairs to + * solve for. + * + * Through the AdditionalData the user can specify some of the + * parameters to be set. + * + * For further information on how the ARPACK routines dnaupd and + * dneupd work and also how to set the parameters appropriately + * please take a look into the ARPACK manual. + * + * @author Bärbel Janssen, Agnieszka Miedlar, 2010. + */ + extern "C" void dnaupd_(int *ido, char *bmat, const unsigned int *n, char *which, const unsigned int *nev, const double *tol, double *resid, int *ncv, double *v, int *ldv, int *iparam, int *ipntr, @@ -34,10 +70,16 @@ extern "C" void dneupd_(int *rvec, char *howmany, int *select, double *d, double *v, int *ldv, int *iparam, int *ipntr, double *workd, double *workl, int *lworkl, int *info); +/** + * Class to interface with the ARPACK routines. + */ class ArpackSolver : public Subscriptor { public: + /** + * Enum to choose the eigenvalues of interest. + */ enum which { algebraically_largest, @@ -51,6 +93,11 @@ class ArpackSolver : public Subscriptor both_ends }; + /** + * Standardized data struct to pipe + * additional data to the solver, + * should it be needed. + */ struct AdditionalData { const unsigned int number_of_arnoldi_vectors; @@ -59,29 +106,34 @@ class ArpackSolver : public Subscriptor const unsigned int number_of_arnoldi_vectors = 15, const which eigenvalue_of_interest = largest_magnitude); }; + + /** + * Access to the object that + * controls convergence. + */ SolverControl &control () const; + /** + * Constructor. + */ ArpackSolver(SolverControl& control, const AdditionalData& data = AdditionalData()); - template + /** + * Solve the generalized eigensprectrum + * problem $A x=\lambda B x$ by calling + * dneupd and dnaupd of ARPACK. + */ + template void solve( - const MATRIX &A, - const MATRIX &B, + const MATRIX1 &A, + const MATRIX2 &B, const INVERSE& inverse, - std::vector &eigenvalues_r, - std::vector &eigenvalues_i, + std::vector > &eigenvalues, std::vector &eigenvectors, const unsigned int n_eigenvalues); - template - void solve( - const MATRIX &A, - const INVERSE& inverse, - std::vector &eigenvalues_r, - std::vector &eigenvalues_i, - std::vector &eigenvectors, - const unsigned int n_eigenvalues); protected: /** @@ -96,7 +148,12 @@ class ArpackSolver : public Subscriptor * this particular solver. */ const AdditionalData additional_data; + private: + + /** + * Exceptions. + */ DeclException2 (ExcInvalidNumberofEigenvalues, int, int, << "Number of wanted eigenvalues " << arg1 << " is larger that the size of the matrix " << arg2); @@ -150,13 +207,13 @@ ArpackSolver::ArpackSolver (SolverControl& control, {} -template +template void ArpackSolver::solve ( - const MATRIX &system_matrix, - const MATRIX &mass_matrix, + const MATRIX1 &system_matrix, + const MATRIX2 &mass_matrix, const INVERSE& inverse, - std::vector &eigenvalues_real, - std::vector &eigenvalues_im, + std::vector > &eigenvalues, std::vector &eigenvectors, const unsigned int n_eigenvalues) { @@ -243,7 +300,8 @@ void ArpackSolver::solve ( // if the starting vector is used it has to be in resid std::vector resid(n, 1.); - // number of Arnoldi basis vectors specified by user in p + // number of Arnoldi basis vectors specified + // in additional_data int ncv = additional_data.number_of_arnoldi_vectors; int ldv = n; @@ -275,7 +333,7 @@ void ArpackSolver::solve ( for(unsigned int i=0; i<3*n; ++i) workd[i] = 0.0; - int lworkl = 3*ncv*(ncv + 2); + int lworkl = 3*ncv*(ncv + 6); std::vector workl (lworkl, 0.); //information out of the iteration int info = 1; @@ -388,7 +446,6 @@ void ArpackSolver::solve ( std::vector select (ncv, 0); - // Arnoldi basis vectors int ldz = n; std::vector z (ldz*ncv, 0.); @@ -399,6 +456,9 @@ void ArpackSolver::solve ( int lworkev = 3*ncv; std::vector workev (lworkev, 0.); + std::vector eigenvalues_real (n_eigenvalues, 0.); + std::vector eigenvalues_im (n_eigenvalues, 0.); + // call of ARPACK dneupd routine dneupd_(&rvec, howmany, &select[0], &eigenvalues_real[0], &eigenvalues_im[0], &z[0], &ldz, &sigmar, &sigmai, @@ -424,20 +484,16 @@ void ArpackSolver::solve ( eigenvectors[i](j) = v[i*n+j]; delete[] workd; - } -} -template -void ArpackSolver::solve ( - const MATRIX &system_matrix, - const INVERSE& inverse, - std::vector &eigenvalues_real, - std::vector &eigenvalues_im, - std::vector &eigenvectors, - const unsigned int n_eigenvalues) -{ - solve (system_matrix, IdentityMatrix(system_matrix.n()), - inverse, eigenvalues_real, eigenvalues_im, n_eigenvalues); + AssertDimension (eigenvalues.size(), eigenvalues_real.size()); + AssertDimension (eigenvalues.size(), eigenvalues_im.size()); + + for(unsigned int i=0; i