From: Wolfgang Bangerth Date: Sun, 21 Sep 2008 23:30:11 +0000 (+0000) Subject: Document the first two auxiliary functions. Avoid one mistake. X-Git-Tag: v8.0.0~8633 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=3fe9bfa74c9019ee286e56888e687b28a4ce9bb5;p=dealii.git Document the first two auxiliary functions. Avoid one mistake. git-svn-id: https://svn.dealii.org/trunk@16887 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-31/step-31.cc b/deal.II/examples/step-31/step-31.cc index 02c1f70567..2cb6d04411 100644 --- a/deal.II/examples/step-31/step-31.cc +++ b/deal.II/examples/step-31/step-31.cc @@ -79,13 +79,12 @@ using namespace dealii; // @sect3{Equation data} - // Again, the next stage in the program - // is the definition of the equation - // data, that is, the various - // boundary conditions, the right hand - // side and the initial condition (remember - // that we're about to solve a time- - // dependent system). The basic strategy + // Again, the next stage in the program is + // the definition of the equation data, that + // is, the various boundary conditions, the + // right hand sides and the initial condition + // (remember that we're about to solve a + // time-dependent system). The basic strategy // for this definition is the same as in // step-22. Regarding the details, though, // there are some differences. @@ -96,27 +95,52 @@ using namespace dealii; // introduction we will use no-flux // conditions // $\mathbf{n}\cdot\mathbf{u}=0$. So what is - // left are two conditions for pressure - // p and temperature T. - - // Secondly, we set an initial - // condition for all problem variables, - // i.e., for u, p and T, - // so the function has dim+2 - // components. - // In this case, we choose a very simple - // test case, where everything is zero. - - // @sect4{Boundary values} + // left are dim-1 conditions for + // the tangential part of the normal + // component of the stress tensor, + // $\textbf{n} \cdot [p \textbf{1} - + // \eta\varepsilon(\textbf{u})]$; we assume + // homogenous values for these components, + // i.e. a natural boundary condition that + // requires no specific action (it appears as + // a zero term in the right hand side of the + // weak form). + // + // For the temperature T, we assume no + // thermal energy flux, i.e. $\mathbf{n} + // \cdot \kappa \nabla T=0$. This, again, is + // a boundary condition that does not require + // us to do anything in particular. + // + // Secondly, we have to set initial + // conditions for the temperature (no initial + // conditions are required for the velocity + // and pressure, since the Stokes equations + // for the quasi-stationary case we consider + // here have time derivatives of the velocity + // or pressure). Here, we choose a very + // simple test case, where the initial + // temperature is zero, and all dynamics are + // driven by the temperature right hand side. + // + // Thirdly, we need to define this right hand + // side of the temperature equation. We + // choose it to be constant within three + // circles (or spheres in 3d) somewhere at + // the bottom of the domain, as explained in + // the introduction, and zero outside. + // + // Finally, or maybe firstly, at the top of + // this namespace, we define the various + // material constants we need ($\eta,\kappa$ + // and the Rayleigh number $Ra$): namespace EquationData { - // define viscosity const double eta = 1; const double kappa = 1e-6; const double Rayleigh_number = 10; - // @sect4{Initial values} template class TemperatureInitialValues : public Function { @@ -150,20 +174,6 @@ namespace EquationData } - - // @sect4{Right hand side} - // - // The last definition of this kind - // is the one for the right hand - // side function. Again, the content - // of the function is very - // basic and zero in most of the - // components, except for a source - // of temperature in some isolated - // regions near the bottom of the - // computational domain, as is explained - // in the problem description in the - // introduction. template class TemperatureRightHandSide : public Function { @@ -216,16 +226,19 @@ namespace EquationData // @sect3{Linear solvers and preconditioners} - // This section introduces some - // objects that are used for the - // solution of the linear equations of - // Stokes system that we need to - // solve in each time step. The basic - // structure is still the same as - // in step-20, where Schur complement - // based preconditioners and solvers - // have been introduced, with the - // actual interface taken from step-22. + // This section introduces some objects + // that are used for the solution of the + // linear equations of the Stokes system + // that we need to solve in each time + // step. The basic structure is still the + // same as in step-20, where Schur + // complement based preconditioners and + // solvers have been introduced, with the + // actual interface taken from step-22 (in + // particular the discussion in the + // "Results" section of step-22, in which + // we introduce alternatives to the direct + // Schur complement approach). namespace LinearSolvers { @@ -262,8 +275,9 @@ namespace LinearSolvers template - InverseMatrix::InverseMatrix (const Matrix &m, - const Preconditioner &preconditioner) + InverseMatrix:: + InverseMatrix (const Matrix &m, + const Preconditioner &preconditioner) : matrix (&m), preconditioner (preconditioner) @@ -272,9 +286,10 @@ namespace LinearSolvers template - void InverseMatrix::vmult ( - TrilinosWrappers::Vector &dst, - const TrilinosWrappers::Vector &src) const + void + InverseMatrix:: + vmult (TrilinosWrappers::Vector &dst, + const TrilinosWrappers::Vector &src) const { SolverControl solver_control (src.size(), 1e-6*src.l2_norm()); SolverCG cg (solver_control); @@ -358,11 +373,11 @@ namespace LinearSolvers // only two distinct eigenvalues. // Such a preconditioner for the // blocked Stokes system has been - // proposed by Silvester and Wathen, - // Fast iterative solution of + // proposed by Silvester and Wathen + // ("Fast iterative solution of // stabilised Stokes systems part II. - // Using general block preconditioners. - // (SIAM J. Numer. Anal., 31 (1994), + // Using general block preconditioners", + // SIAM J. Numer. Anal., 31 (1994), // pp. 1352-1367). // // The deal.II users who have already @@ -382,12 +397,13 @@ namespace LinearSolvers // functions further below in the // program code. // - // First the declarations. These - // are similar to the definition of - // the Schur complement in step-20, - // with the difference that we need - // some more preconditioners in - // the constructor. + // First the declarations. These are + // similar to the definition of the Schur + // complement in step-20, with the + // difference that we need some more + // preconditioners in the constructor and + // that the matrices we use here are built + // upon Trilinos: template class BlockSchurPreconditioner : public Subscriptor { @@ -425,25 +441,23 @@ namespace LinearSolvers {} - // This is the vmult - // function. We implement - // the action of $P^{-1}$ as described - // above in three successive steps. - // The first step multiplies - // the velocity vector by a - // preconditioner of the matrix A. - // The resuling velocity vector - // is then multiplied by $B$ and - // subtracted from the pressure. - // This second step only acts on - // the pressure vector and is + // Next is the vmult + // function. We implement the action of + // $P^{-1}$ as described above in three + // successive steps. The first step + // multiplies the velocity part of the + // vector by a preconditioner of the matrix + // A. The resuling velocity vector + // is then multiplied by $B$ and subtracted + // from the pressure. This second step + // only acts on the pressure vector and is // accomplished by the command - // SparseMatrix::residual. Next, - // we change the sign in the - // temporary pressure vector and - // finally multiply by the pressure - // mass matrix to get the final - // pressure vector. + // SparseMatrix::residual. Next, we change + // the sign in the temporary pressure + // vector and finally multiply by the + // pressure mass matrix to get the final + // pressure vector, completing our work on + // the Stokes preconditioner: template void BlockSchurPreconditioner::vmult ( TrilinosWrappers::BlockVector &dst, @@ -460,19 +474,38 @@ namespace LinearSolvers // @sect3{The BoussinesqFlowProblem class template} - // The definition of this class is + // The definition of the class that defines + // the top-level logic of solving the + // time-dependent Boussinesq problem is // mainly based on the step-22 tutorial - // program. Most of the data types are - // the same as there. However, we - // deal with a time-dependent system now, - // and there is temperature to take care - // of as well, so we need some additional - // function and variable declarations. - // Furthermore, we have a slightly more - // sophisticated solver we are going to - // use, so there is a second pointer - // to a sparse ILU for a pressure - // mass matrix as well. + // program. The main differences are that now + // we also have to solve for the temperature + // equation, which forces us to have a second + // DoFHandler object for the temperature + // variable as well as matrices, right hand + // sides, and solution vectors for the + // current and previous time steps. As + // mentioned in the introduction, all linear + // algebra objects are going to use wrappers + // of the corresponding Trilinos + // functionality. + // + // The member functions of this class are + // reminiscent of step-21, where we also used + // a staggered scheme that first solves the + // flow equations (here the Stokes equations, + // in step-21 Darcy flow) and then updates + // the advected quantity (here the + // temperature, there the saturation). The + // functions that are new are mainly + // concerned with determining the time step, + // as well as the proper size of the + // artificial viscosity stabilization. + // + // The last three variables indicate whether + // the various matrices or preconditioners + // need to be rebuilt the next time the + // corresponding build functions are called. template class BoussinesqFlowProblem { @@ -557,18 +590,17 @@ class BoussinesqFlowProblem // @sect4{BoussinesqFlowProblem::BoussinesqFlowProblem} // - // The constructor of this class is - // an extension of the constructor - // in step-22. We need to include - // the temperature in the definition - // of the finite element. As discussed - // in the introduction, we are going - // to use discontinuous elements - // of one degree less than for pressure - // there. Moreover, we initialize - // the time stepping as well as the - // options for the matrix assembly - // and preconditioning. + // The constructor of this class is an + // extension of the constructor in + // step-22. We need to add the various + // variables that concern the temperature. As + // discussed in the introduction, we are + // going to use $Q_2\times Q_1$ (Taylor-Hood) + // elements again for the Stokes part, and + // $Q_2$ elements for the + // temperature. Moreover, we initialize the + // time stepping as well as the options for + // matrix assembly and preconditioning: template BoussinesqFlowProblem::BoussinesqFlowProblem () : @@ -594,6 +626,13 @@ BoussinesqFlowProblem::BoussinesqFlowProblem () // @sect4{BoussinesqFlowProblem::get_maximal_velocity} + + // Starting the real functionality of this + // class is a helper function that determines + // the maximum velocity in the domain (at the + // quadrature points, in fact). It should be + // relatively obvious to all who have gotten + // to this point: template double BoussinesqFlowProblem::get_maximal_velocity () const { @@ -630,46 +669,125 @@ double BoussinesqFlowProblem::get_maximal_velocity () const // @sect4{BoussinesqFlowProblem::get_extrapolated_temperature_range} + + // Next a function that determines the + // minimum and maximum temperature at + // quadrature points inside $\Omega$ when + // extrapolated from the two previous time + // steps to the current one. We need this + // information in the computation of the + // artificial viscosity parameter $\nu$ as + // discussed in the introduction. + // + // The formula for the extrapolated + // temperature is + // $\left(1+\frac{k_n}{\frac{k_{n-1}} + // \right)T^{n-1} + \frac{k_n}{\frac{k_{n-1}} + // T^{n-2}$. The way to compute it is to loop + // over all quadrature points and updated the + // maximum and minimum value if the current + // value is bigger/smaller than the previous + // one. We initialize the variables that + // store the max and min before the loop over + // all quadrature points by bounding + // $\left(1+\frac{k_n}{\frac{k_{n-1}} + // \right)T^{n-1}({\mathbf x}_s) + + // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf + // x}_s) \le \max_{{\mathbf + // x}_s}\left(1+\frac{k_n}{\frac{k_{n-1}} + // \right)T^{n-1}({\mathbf x}_s) + + // \frac{k_n}{\frac{k_{n-1}} T^{n-2}({\mathbf + // x}_s)$, where ${\mathbf x}_s$ is the set + // of the support points (i.e. nodal points, + // but note that the maximum of a finite + // element function can be attained at a + // point that's not a support point unless + // one is using $Q_1$ elements). So if we + // initialize the minimal value by this upper + // bound, and the maximum value by the + // negative of this upper bound, then we know + // for a fact that it is larger/smaller than + // the minimum/maximum and that the loop over + // all quadrature points is ultimately going + // to update the initial value with the + // correct one. + // + // The only other complication worth + // mentioning here is that in the first time + // step, $T^{k-2}$ is not yet available of + // course. In that case, we can only use + // $T^{k-1}$ which we have from the initial + // temperature. template std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range () const { - QGauss quadrature_formula(temperature_degree+2); - const unsigned int n_q_points = quadrature_formula.size(); + const QGauss quadrature_formula(temperature_degree+2); + const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values (temperature_fe, quadrature_formula, update_values); std::vector old_temperature_values(n_q_points); std::vector old_old_temperature_values(n_q_points); - - double min_temperature = (1. + time_step/old_time_step) * - old_temperature_solution.linfty_norm() - + - time_step/old_time_step * - old_old_temperature_solution.linfty_norm(), - max_temperature = -min_temperature; - typename DoFHandler::active_cell_iterator - cell = temperature_dof_handler.begin_active(), - endc = temperature_dof_handler.end(); - for (; cell!=endc; ++cell) + if (timestep_number != 0) { - fe_values.reinit (cell); - fe_values.get_function_values (old_temperature_solution, old_temperature_values); - fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values); + double min_temperature = (1. + time_step/old_time_step) * + old_temperature_solution.linfty_norm() + + + time_step/old_time_step * + old_old_temperature_solution.linfty_norm(), + max_temperature = -min_temperature; + + typename DoFHandler::active_cell_iterator + cell = temperature_dof_handler.begin_active(), + endc = temperature_dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + fe_values.get_function_values (old_temperature_solution, + old_temperature_values); + fe_values.get_function_values (old_old_temperature_solution, + old_old_temperature_values); - for (unsigned int q=0; q::active_cell_iterator + cell = temperature_dof_handler.begin_active(), + endc = temperature_dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + fe_values.get_function_values (old_temperature_solution, + old_temperature_values); + + for (unsigned int q=0; q::run () setup_dofs(); - unsigned int pre_refinement_step = 0; + unsigned int pre_refinement_step = 0; start_time_iteration: @@ -1959,7 +2077,9 @@ void BoussinesqFlowProblem::run () EquationData::TemperatureInitialValues(), old_temperature_solution); - timestep_number = 0; + timestep_number = 0; + time_step = old_time_step = 0; + double time = 0; do diff --git a/deal.II/examples/step-32/step-32.cc b/deal.II/examples/step-32/step-32.cc index 83cdeb17dd..4f82e48909 100644 --- a/deal.II/examples/step-32/step-32.cc +++ b/deal.II/examples/step-32/step-32.cc @@ -428,43 +428,72 @@ template std::pair BoussinesqFlowProblem::get_extrapolated_temperature_range () const { - QGauss quadrature_formula(temperature_degree+2); - const unsigned int n_q_points = quadrature_formula.size(); + const QGauss quadrature_formula(temperature_degree+2); + const unsigned int n_q_points = quadrature_formula.size(); FEValues fe_values (temperature_fe, quadrature_formula, update_values); std::vector old_temperature_values(n_q_points); std::vector old_old_temperature_values(n_q_points); - double min_temperature = (1. + time_step/old_time_step) * - old_temperature_solution.linfty_norm() - + - time_step/old_time_step * - old_old_temperature_solution.linfty_norm(), - max_temperature = -min_temperature; + if (timestep_number != 0) + { + double min_temperature = (1. + time_step/old_time_step) * + old_temperature_solution.linfty_norm() + + + time_step/old_time_step * + old_old_temperature_solution.linfty_norm(), + max_temperature = -min_temperature; + + typename DoFHandler::active_cell_iterator + cell = temperature_dof_handler.begin_active(), + endc = temperature_dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + fe_values.get_function_values (old_temperature_solution, + old_temperature_values); + fe_values.get_function_values (old_old_temperature_solution, + old_old_temperature_values); - typename DoFHandler::active_cell_iterator - cell = temperature_dof_handler.begin_active(), - endc = temperature_dof_handler.end(); - for (; cell!=endc; ++cell) - if (cell->subdomain_id() == (unsigned int)trilinos_communicator.MyPID()) - { - fe_values.reinit (cell); - fe_values.get_function_values (old_temperature_solution, old_temperature_values); - fe_values.get_function_values (old_old_temperature_solution, old_old_temperature_values); + for (unsigned int q=0; q::active_cell_iterator + cell = temperature_dof_handler.begin_active(), + endc = temperature_dof_handler.end(); + for (; cell!=endc; ++cell) + { + fe_values.reinit (cell); + fe_values.get_function_values (old_temperature_solution, + old_temperature_values); + + for (unsigned int q=0; q::run () EquationData::TemperatureInitialValues(), old_temperature_solution); - timestep_number = 0; + timestep_number = 0; + time_step = old_time_step = 0; + double time = 0; do