From: wolf Date: Thu, 30 May 2002 13:30:02 +0000 (+0000) Subject: Remove use of internals of the FEValues class. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=40250f83aaefbb52cf0a30618a3136e23046b27e;p=dealii-svn.git Remove use of internals of the FEValues class. git-svn-id: https://svn.dealii.org/trunk@5940 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-5/step-5.cc b/deal.II/examples/step-5/step-5.cc index e8c2388d2d..4e07241a69 100644 --- a/deal.II/examples/step-5/step-5.cc +++ b/deal.II/examples/step-5/step-5.cc @@ -438,84 +438,6 @@ void LaplaceProblem::assemble_system () // constructor using the update // flags. fe_values.reinit (cell); - // Now, these quantities are - // stored in arrays in the - // FEValues object. Usually, - // the internals of how and - // where they are stored is not - // something that the outside - // world should know, but since - // this is a time critical - // function we decided to - // publicize these arrays a - // little bit, and provide - // facilities to export the - // address where this data is - // stored. - // - // For example, the values of - // shape function j at - // quadrature point q is stored - // in a matrix, of which we can - // get the address as follows - // (note that this is a - // reference to the matrix, - // symbolized by the ampersand ``&'', - // and that it must be a - // constant reference, since - // only read-only access is - // granted): - const FullMatrix - & shape_values = fe_values.get_shape_values(); - // Instead of writing - // fe_values.shape_value(j,q) - // we can now write - // shape_values[j][q], i.e. the - // function call needed - // previously for each access - // will be optimized away. - // - // There are alike functions - // for almost all data elements - // in the FEValues class. The - // gradient are accessed as - // follows: - const std::vector > > - & shape_grads = fe_values.get_shape_grads(); - // The data type looks a bit - // unwieldy, since each entry - // in the matrix (j,q) now - // needs to be the gradient of - // the shape function, which is - // a tensor rather than a - // scalar. - // - // Similarly, access to the - // place where quadrature - // points and the determinants - // of the Jacobian matrices - // times the weights of the - // respective quadrature points - // are stored, can be obtained - // like this: - const std::vector - & JxW_values = fe_values.get_JxW_values(); - const std::vector > - & q_points = fe_values.get_quadrature_points(); - // Admittedly, the declarations - // above are not easily - // readable, but they can save - // many function calls in the - // inner loops and can thus - // make assemblage faster. - // - // An additional advantage is - // that the inner loops are - // simpler to read, since the - // fe_values object is no more - // explicitely needed to access - // the different fields (see - // below). // There is one more thing: in // this example, we want to use @@ -529,7 +451,7 @@ void LaplaceProblem::assemble_system () // is a virtual function, so // calling it is relatively // expensive. Therefore, we use - // a function of the Function + // a function of the ``Function'' // class which returns the // values at all quadrature // points at once; that @@ -537,40 +459,17 @@ void LaplaceProblem::assemble_system () // but it needs to be computed // once per cell only, not once // in the inner loop: - coefficient.value_list (q_points, coefficient_values); + coefficient.value_list (fe_values.get_quadrature_points(), + coefficient_values); // It should be noted that the // creation of the // coefficient_values object is // done outside the loop over // all cells to avoid memory // allocation each time we - // visit a new cell. Contrary - // to this, the other variables - // above were created inside - // the loop, but they were only - // references to memory that - // has already been allocated - // (i.e. they are pointers to - // that memory) and therefore, - // no new memory needs to be - // allocated; in particular, by - // declaring the pointers as - // close to their use as - // possible, we give the - // compiler a better choice to - // optimize them away - // altogether, something which - // it definitely can't do with - // the coefficient_values - // object since it is too - // complicated, but mostly - // because it's address is - // passed to a virtual function - // which is not knows at - // compile time. + // visit a new cell. - // Using the various - // abbreviations, the loops + // With all this, the loops // then look like this (the // parentheses around the // product of the two gradients @@ -588,16 +487,16 @@ void LaplaceProblem::assemble_system () { for (unsigned int j=0; j