From: wolf Date: Mon, 29 Jun 1998 19:53:33 +0000 (+0000) Subject: Start implementation of cubic elements. X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=40f334ac1e48aeed602ec60c45d7e62ed21b25c0;p=dealii-svn.git Start implementation of cubic elements. git-svn-id: https://svn.dealii.org/trunk@419 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/deal.II/source/fe/fe_lib.cubic.cc b/deal.II/deal.II/source/fe/fe_lib.cubic.cc new file mode 100644 index 0000000000..c297494815 --- /dev/null +++ b/deal.II/deal.II/source/fe/fe_lib.cubic.cc @@ -0,0 +1,1482 @@ +/* $Id$ */ + +#include +#include +#include +#include +#include + + +/*--------------------------------- For 1d --------------------------------- + -- Use the following maple script to generate the basis functions, + -- gradients and prolongation matrices as well as the mass matrix. + -- Make sure that the files do not exists beforehand, since output + -- is appended instead of overwriting previous contents. + -- + -- You should only have to change the very first lines for polynomials + -- of higher order. + -------------------------------------------------------------------------- + n_functions := 4; + + ansatz_points := array(0..n_functions-1); + ansatz_points[0] := 0; + ansatz_points[1] := 1; + ansatz_points[2] := 1/3; + ansatz_points[3] := 2/3; + + phi_polynom := array(0..n_functions-1); + grad_phi_polynom := array(0..n_functions-1); + local_mass_matrix := array(0..n_functions-1, 0..n_functions-1); + + for i from 0 to n_functions-1 do + # note that the interp function wants vector indexed from + # one and not from zero. + values := array(1..n_functions); + for j from 1 to n_functions do + values[j] := 0; + od; + values[i+1] := 1; + + shifted_ansatz_points := array (1..n_functions); + for j from 1 to n_functions do + shifted_ansatz_points[j] := ansatz_points[j-1]; + od; + + phi_polynom[i] := interp (shifted_ansatz_points, values, xi); + grad_phi_polynom[i] := diff(phi_polynom[i], xi); + od; + + phi:= proc(i,x) subs(xi=x, phi_polynom[i]); end; + + + points[0] := array(0..n_functions-1); + points[1] := array(0..n_functions-1); + for i from 0 to n_functions-1 do + points[0][i] := ansatz_points[i]/2; + points[1][i] := ansatz_points[i]/2+1/2; + od; + + prolongation := array(0..1,0..n_functions-1, 0..n_functions-1); + + for i from 0 to 1 do + for j from 0 to n_functions-1 do + for k from 0 to n_functions-1 do + prolongation[i,j,k] := phi(k, points[i][j]); + od; + od; + od; + + for i from 0 to n_functions-1 do + for j from 0 to n_functions-1 do + local_mass_matrix[i,j] := int(phi_polynom[i] * phi_polynom[j] * h, + xi=0..1); + od; + od; + + readlib(C); + C(phi_polynom, filename=shape_value_1d); + C(grad_phi_polynom, filename=shape_grad_1d); + C(prolongation, filename=prolongation_1d); + C(local_mass_matrix, optimized, filename=massmatrix_1d); + + ----------------------------------------------------------------------- + Use the following perl scripts to convert the output into a + suitable format: + + perl -pi -e 's/phi_polynom\[(\d)\] =/case $1: return/g;' shape_value_1d + perl -pi -e 's/grad_phi_polynom\[(\d)\] = (.*);/case $1: return Point<1>($2);/g;' shape_grad_1d + perl -pi -e 's/\[(\d)\]\[(\d)\]/($1,$2)/g;' massmatrix_1d + perl -pi -e 's/\[(\d)\]\[(\d)\]\[(\d)\]/[$1]($2,$3)/g;' prolongation_1d + perl -pi~ -e 's/(t\d)/const double $1/g;' massmatrix_1d +*/ + + + + +/*--------------------------------- For 2d --------------------------------- + -- Use the following maple script to generate the basis functions, + -- gradients and prolongation matrices as well as the mass matrix. + -- Make sure that the files do not exists beforehand, since output + -- is appended instead of overwriting previous contents. + -- + -- You should only have to change the very first lines for polynomials + -- of higher order. + -------------------------------------------------------------------------- + n_functions := 16; + + ansatz_function := (a1 + a2*xi + a3*xi*xi + a4*xi*xi*xi) + + (b1 + b2*xi + b3*xi*xi + b4*xi*xi*xi)*eta + + (c1 + c2*xi + c3*xi*xi + c4*xi*xi*xi)*eta*eta + + (d1 + d2*xi + d3*xi*xi + d4*xi*xi*xi)*eta*eta*eta; + ansatz_points := array(0..n_functions-1); + # note: ansatz_points[i] is a vector which is indexed from + # one and not from zero! + ansatz_points[0] := [0,0]; + ansatz_points[1] := [1,0]; + ansatz_points[2] := [1,1]; + ansatz_points[3] := [0,1]; + ansatz_points[4] := [1/3,0]; + ansatz_points[5] := [2/3,0]; + ansatz_points[6] := [1,1/3]; + ansatz_points[7] := [1,2/3]; + ansatz_points[8] := [1/3,1]; + ansatz_points[9] := [2/3,1]; + ansatz_points[10]:= [0,1/3]; + ansatz_points[11]:= [0,2/3]; + ansatz_points[12]:= [1/3,1/3]; + ansatz_points[13]:= [2/3,1/3]; + ansatz_points[14]:= [2/3,2/3]; + ansatz_points[15]:= [1/3,2/3]; + + + phi_polynom := array(0..n_functions-1); + grad_phi_polynom := array(0..n_functions-1,0..1); + local_mass_matrix := array(0..n_functions-1, 0..n_functions-1); + prolongation := array(0..3,0..n_functions-1, 0..n_functions-1); + + + for i from 0 to n_functions-1 do + values := array(1..n_functions); + for j from 1 to n_functions do + values[j] := 0; + od; + values[i+1] := 1; + + equation_system := {}; + for j from 0 to n_functions-1 do + poly := subs(xi=ansatz_points[j][1], + eta=ansatz_points[j][2], + ansatz_function); + if (i=j) then + equation_system := equation_system union {poly = 1}; + else + equation_system := equation_system union {poly = 0}; + fi; + od; + + phi_polynom[i] := subs(solve(equation_system), ansatz_function); + grad_phi_polynom[i,0] := diff(phi_polynom[i], xi); + grad_phi_polynom[i,1] := diff(phi_polynom[i], eta); + od; + + phi:= proc(i,x,y) subs(xi=x, eta=y, phi_polynom[i]); end; + + #points on children; let them be indexed one-based, as are + #the ansatz_points + points[0] := array(0..n_functions-1, 1..2); + points[1] := array(0..n_functions-1, 1..2); + points[2] := array(0..n_functions-1, 1..2); + points[3] := array(0..n_functions-1, 1..2); + for i from 0 to n_functions-1 do + points[0][i,1] := ansatz_points[i][1]/2; + points[0][i,2] := ansatz_points[i][2]/2; + + points[1][i,1] := ansatz_points[i][1]/2+1/2; + points[1][i,2] := ansatz_points[i][2]/2; + + points[2][i,1] := ansatz_points[i][1]/2+1/2; + points[2][i,2] := ansatz_points[i][2]/2+1/2; + + points[3][i,1] := ansatz_points[i][1]/2; + points[3][i,2] := ansatz_points[i][2]/2+1/2; + od; + + for i from 0 to 3 do + for j from 0 to n_functions-1 do + for k from 0 to n_functions-1 do + prolongation[i,j,k] := phi(k, points[i][j,1], points[i][j,2]); + od; + od; + od; + + # tphi are the basis functions of the linear element. These functions + # are used for the computation of the subparametric transformation from + # unit cell to real cell. + tphi[0] := (1-xi)*(1-eta); + tphi[1] := xi*(1-eta); + tphi[2] := xi*eta; + tphi[3] := (1-xi)*eta; + x_real := sum(x[s]*tphi[s], s=0..3); + y_real := sum(y[s]*tphi[s], s=0..3); + detJ := diff(x_real,xi)*diff(y_real,eta) - diff(x_real,eta)*diff(y_real,xi); + for i from 0 to n_functions-1 do + for j from 0 to n_functions-1 do + local_mass_matrix[i,j] := int(int(phi_polynom[i] * phi_polynom[j] * detJ, + xi=0..1), eta=0..1); + od; + od; + + readlib(C); + C(phi_polynom, filename=shape_value_2d); + C(grad_phi_polynom, filename=shape_grad_2d); + C(prolongation, filename=prolongation_2d); + C(local_mass_matrix, optimized, filename=massmatrix_2d); + + ----------------------------------------------------------------------- + Use the following perl scripts to convert the output into a + suitable format. + + perl -pi -e 's/phi_polynom\[(\d+)\] =/case $1: return/g;' shape_value_2d + perl -pi -e 's/([^;])\n/$1/g;' shape_grad_2d + perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[0\] = (.*);/case $1: return Point<2>($2,/g;' shape_grad_2d + perl -pi -e 's/grad_phi_polynom\[(\d+)\]\[1\] = (.*);/$2);/g;' shape_grad_2d + perl -pi -e 's/\[(\d+)\]\[(\d+)\]/($1,$2)/g;' massmatrix_2d + perl -pi -e 's/\[(\d+)\]\[(\d+)\]\[(\d+)\]/[$1]($2,$3)/g;' prolongation_2d + perl -pi~ -e 's/(t\d+) =/const double $1 =/g;' massmatrix_2d +*/ + + + + + + +#if deal_II_dimension == 1 + +template <> +FECubicSub<1>::FECubicSub () : + FiniteElement<1> (1, 2) { + prolongation[0](0,0) = 1.0; + prolongation[0](0,1) = 0.0; + prolongation[0](0,2) = 0.0; + prolongation[0](0,3) = 0.0; + prolongation[0](1,0) = -1.0/16.0; + prolongation[0](1,1) = -1.0/16.0; + prolongation[0](1,2) = 9.0/16.0; + prolongation[0](1,3) = 9.0/16.0; + prolongation[0](2,0) = 5.0/16.0; + prolongation[0](2,1) = 1.0/16.0; + prolongation[0](2,2) = 15.0/16.0; + prolongation[0](2,3) = -5.0/16.0; + prolongation[0](3,0) = 0.0; + prolongation[0](3,1) = 0.0; + prolongation[0](3,2) = 1.0; + prolongation[0](3,3) = 0.0; + prolongation[1](0,0) = -1.0/16.0; + prolongation[1](0,1) = -1.0/16.0; + prolongation[1](0,2) = 9.0/16.0; + prolongation[1](0,3) = 9.0/16.0; + prolongation[1](1,0) = 0.0; + prolongation[1](1,1) = 1.0; + prolongation[1](1,2) = 0.0; + prolongation[1](1,3) = 0.0; + prolongation[1](2,0) = 0.0; + prolongation[1](2,1) = 0.0; + prolongation[1](2,2) = 0.0; + prolongation[1](2,3) = 1.0; + prolongation[1](3,0) = 1.0/16.0; + prolongation[1](3,1) = 5.0/16.0; + prolongation[1](3,2) = -5.0/16.0; + prolongation[1](3,3) = 15.0/16.0; +}; + + + +template <> +void FECubicSub<1>::fill_fe_values (const DoFHandler<1>::cell_iterator &cell, + const vector > &unit_points, + vector &jacobians, + const bool compute_jacobians, + vector > &ansatz_points, + const bool compute_ansatz_points, + vector > &q_points, + const bool compute_q_points, + const Boundary<1> &boundary) const { + // simply pass down + FiniteElement<1>::fill_fe_values (cell, unit_points, + jacobians, compute_jacobians, + ansatz_points, compute_ansatz_points, + q_points, compute_q_points, boundary); +}; + + + +template <> +double +FECubicSub<1>::shape_value(const unsigned int i, + const Point<1> &p) const +{ + Assert((i +inline +double +FECubicSub<1>::linear_shape_value(const unsigned int i, + const Point<1> &p) const +{ + Assert((i<2), ExcInvalidIndex(i)); + const double xi = p(0); + switch (i) + { + case 0: return 1.-xi; + case 1: return xi; + } + return 0.; +}; + + + +template <> +Point<1> +FECubicSub<1>::shape_grad(const unsigned int i, + const Point<1> &p) const +{ + Assert((i(-27.0/2.0*xi*xi+18.0*xi-11.0/2.0); + case 1: return Point<1>(27.0/2.0*xi*xi-9.0*xi+1.0); + case 2: return Point<1>(81.0/2.0*xi*xi-45.0*xi+9.0); + case 3: return Point<1>(-81.0/2.0*xi*xi+36.0*xi-9.0/2.0); + } + return Point<1>(); +}; + + + +template <> +inline +Point<1> +FECubicSub<1>::linear_shape_grad(const unsigned int i, + const Point<1>&) const +{ + Assert((i<2), ExcInvalidIndex(i)); + switch (i) + { + case 0: return Point<1>(-1.); + case 1: return Point<1>(1.); + } + return Point<1>(); +}; + + + +template <> +void FECubicSub<1>::get_ansatz_points (const typename DoFHandler<1>::cell_iterator &cell, + const Boundary<1> &boundary, + vector > &ansatz_points) const { + FiniteElement<1>::get_ansatz_points (cell, boundary, ansatz_points); +}; + + + +template <> +void FECubicSub<1>::get_face_ansatz_points (const typename DoFHandler<1>::face_iterator &, + const Boundary<1> &, + vector > &) const { + Assert (false, ExcInternalError()); +}; + + + +template <> +void FECubicSub<1>::get_face_jacobians (const DoFHandler<1>::face_iterator &, + const Boundary<1> &, + const vector > &, + vector &) const { + Assert (false, ExcInternalError()); +}; + + + +template <> +void FECubicSub<1>::get_subface_jacobians (const DoFHandler<1>::face_iterator &, + const unsigned int , + const vector > &, + vector &) const { + Assert (false, ExcInternalError()); +}; + + + +template <> +void FECubicSub<1>::get_normal_vectors (const DoFHandler<1>::cell_iterator &, + const unsigned int, + const Boundary<1> &, + const vector > &, + vector > &) const { + Assert (false, ExcInternalError()); +}; + + + +template <> +void FECubicSub<1>::get_normal_vectors (const DoFHandler<1>::cell_iterator &, + const unsigned int, + const unsigned int, + const vector > &, + vector > &) const { + Assert (false, ExcInternalError()); +}; + + + +template <> +void FECubicSub<1>::get_local_mass_matrix (const DoFHandler<1>::cell_iterator &cell, + const Boundary<1> &, + dFMatrix &local_mass_matrix) const { + Assert (local_mass_matrix.n() == total_dofs, + ExcWrongFieldDimension(local_mass_matrix.n(),total_dofs)); + Assert (local_mass_matrix.m() == total_dofs, + ExcWrongFieldDimension(local_mass_matrix.m(),total_dofs)); + + const double h = cell->vertex(1)(0) - cell->vertex(0)(0); + Assert (h>0, ExcJacobiDeterminantHasWrongSign()); + + const double t1 = 8.0/105.0*h; + const double t2 = 19.0/1680.0*h; + const double t3 = 33.0/560.0*h; + const double t4 = 3.0/140.0*h; + const double t5 = 27.0/70.0*h; + const double t6 = 27.0/560.0*h; + local_mass_matrix(0,0) = const double t1; + local_mass_matrix(0,1) = const double t2; + local_mass_matrix(0,2) = const double t3; + local_mass_matrix(0,3) = - const double t4; + local_mass_matrix(1,0) = const double t2; + local_mass_matrix(1,1) = const double t1; + local_mass_matrix(1,2) = - const double t4; + local_mass_matrix(1,3) = const double t3; + local_mass_matrix(2,0) = const double t3; + local_mass_matrix(2,1) = - const double t4; + local_mass_matrix(2,2) = const double t5; + local_mass_matrix(2,3) = - const double t6; + local_mass_matrix(3,0) = - const double t4; + local_mass_matrix(3,1) = const double t3; + local_mass_matrix(3,2) = - const double t6; + local_mass_matrix(3,3) = const double t5; +}; + +#endif + + + + +#if deal_II_dimension == 2 + +template <> +FECubicSub<2>::FECubicSub () : + FiniteElement<2> (1, 1, 1) +{ + interface_constraints(0,2) = 1.0; + interface_constraints(1,0) = 3./8.; + interface_constraints(1,1) = -1./8.; + interface_constraints(1,2) = 3./4.; + interface_constraints(2,0) = -1./8.; + interface_constraints(2,1) = 3./8.; + interface_constraints(2,2) = 3./4.; + +/* + Get the prolongation matrices by the following little maple script: + + phi[0] := proc(xi,eta) (1-xi)*( 2*xi-1) * (1-eta)*( 2*eta-1); end; + phi[1] := proc(xi,eta) xi *(-2*xi+1) * (1-eta)*( 2*eta-1); end; + phi[2] := proc(xi,eta) xi *(-2*xi+1) * eta *(-2*eta+1); end; + phi[3] := proc(xi,eta) (1-xi)*( 2*xi-1) * eta *(-2*eta+1); end; + phi[4] := proc(xi,eta) 4 * (1-xi)*xi * (1-eta)*(1-2*eta); end; + phi[5] := proc(xi,eta) 4 * xi *(-1+2*xi) * (1-eta)*eta; end; + phi[6] := proc(xi,eta) 4 * (1-xi)*xi * eta *(-1+2*eta);end; + phi[7] := proc(xi,eta) 4 * (1-xi)*(1-2*xi) * (1-eta)*eta; end; + phi[8] := proc(xi,eta) 16 * xi*(1-xi) * eta*(1-eta); end; + + points_x[0] := array(0..8, [0, 1/2, 1/2, 0, 1/4, 1/2, 1/4, 0, 1/4]); + points_y[0] := array(0..8, [0, 0, 1/2, 1/2, 0, 1/4, 1/2, 1/4, 1/4]); + + points_x[1] := array(0..8, [1/2, 1, 1, 1/2, 3/4, 1, 3/4, 1/2, 3/4]); + points_y[1] := array(0..8, [0, 0, 1/2, 1/2, 0, 1/4, 1/2, 1/4, 1/4]); + + points_x[2] := array(0..8, [1/2, 1, 1, 1/2, 3/4, 1, 3/4, 1/2, 3/4]); + points_y[2] := array(0..8, [1/2, 1/2, 1, 1, 1/2, 3/4, 1, 3/4, 3/4]); + + points_x[3] := array(0..8, [0, 1/2, 1/2, 0, 1/4, 1/2, 1/4, 0, 1/4]); + points_y[3] := array(0..8, [1/2, 1/2, 1, 1, 1/2, 3/4, 1, 3/4, 3/4]); + + prolongation := array(0..3,0..8, 0..8); + + for i from 0 to 3 do + for j from 0 to 8 do + for k from 0 to 8 do + prolongation[i,j,k] := phi[k](points_x[i][j], points_y[i][j]); + od; + od; + od; + + readlib(C); + C(prolongation); +*/ + + prolongation[0](0,0) = 1.0; + prolongation[0](0,1) = 0.0; + prolongation[0](0,2) = 0.0; + prolongation[0](0,3) = 0.0; + prolongation[0](0,4) = 0.0; + prolongation[0](0,5) = 0.0; + prolongation[0](0,6) = 0.0; + prolongation[0](0,7) = 0.0; + prolongation[0](0,8) = 0.0; + prolongation[0](1,0) = 0.0; + prolongation[0](1,1) = 0.0; + prolongation[0](1,2) = 0.0; + prolongation[0](1,3) = 0.0; + prolongation[0](1,4) = 1.0; + prolongation[0](1,5) = 0.0; + prolongation[0](1,6) = 0.0; + prolongation[0](1,7) = 0.0; + prolongation[0](1,8) = 0.0; + prolongation[0](2,0) = 0.0; + prolongation[0](2,1) = 0.0; + prolongation[0](2,2) = 0.0; + prolongation[0](2,3) = 0.0; + prolongation[0](2,4) = 0.0; + prolongation[0](2,5) = 0.0; + prolongation[0](2,6) = 0.0; + prolongation[0](2,7) = 0.0; + prolongation[0](2,8) = 1.0; + prolongation[0](3,0) = 0.0; + prolongation[0](3,1) = 0.0; + prolongation[0](3,2) = 0.0; + prolongation[0](3,3) = 0.0; + prolongation[0](3,4) = 0.0; + prolongation[0](3,5) = 0.0; + prolongation[0](3,6) = 0.0; + prolongation[0](3,7) = 1.0; + prolongation[0](3,8) = 0.0; + prolongation[0](4,0) = 3.0/8.0; + prolongation[0](4,1) = -1.0/8.0; + prolongation[0](4,2) = 0.0; + prolongation[0](4,3) = 0.0; + prolongation[0](4,4) = 3.0/4.0; + prolongation[0](4,5) = 0.0; + prolongation[0](4,6) = 0.0; + prolongation[0](4,7) = 0.0; + prolongation[0](4,8) = 0.0; + prolongation[0](5,0) = 0.0; + prolongation[0](5,1) = 0.0; + prolongation[0](5,2) = 0.0; + prolongation[0](5,3) = 0.0; + prolongation[0](5,4) = 3.0/8.0; + prolongation[0](5,5) = 0.0; + prolongation[0](5,6) = -1.0/8.0; + prolongation[0](5,7) = 0.0; + prolongation[0](5,8) = 3.0/4.0; + prolongation[0](6,0) = 0.0; + prolongation[0](6,1) = 0.0; + prolongation[0](6,2) = 0.0; + prolongation[0](6,3) = 0.0; + prolongation[0](6,4) = 0.0; + prolongation[0](6,5) = -1.0/8.0; + prolongation[0](6,6) = 0.0; + prolongation[0](6,7) = 3.0/8.0; + prolongation[0](6,8) = 3.0/4.0; + prolongation[0](7,0) = 3.0/8.0; + prolongation[0](7,1) = 0.0; + prolongation[0](7,2) = 0.0; + prolongation[0](7,3) = -1.0/8.0; + prolongation[0](7,4) = 0.0; + prolongation[0](7,5) = 0.0; + prolongation[0](7,6) = 0.0; + prolongation[0](7,7) = 3.0/4.0; + prolongation[0](7,8) = 0.0; + prolongation[0](8,0) = 9.0/64.0; + prolongation[0](8,1) = -3.0/64.0; + prolongation[0](8,2) = 1.0/64.0; + prolongation[0](8,3) = -3.0/64.0; + prolongation[0](8,4) = 9.0/32.0; + prolongation[0](8,5) = -3.0/32.0; + prolongation[0](8,6) = -3.0/32.0; + prolongation[0](8,7) = 9.0/32.0; + prolongation[0](8,8) = 9.0/16.0; + prolongation[1](0,0) = 0.0; + prolongation[1](0,1) = 0.0; + prolongation[1](0,2) = 0.0; + prolongation[1](0,3) = 0.0; + prolongation[1](0,4) = 1.0; + prolongation[1](0,5) = 0.0; + prolongation[1](0,6) = 0.0; + prolongation[1](0,7) = 0.0; + prolongation[1](0,8) = 0.0; + prolongation[1](1,0) = 0.0; + prolongation[1](1,1) = 1.0; + prolongation[1](1,2) = 0.0; + prolongation[1](1,3) = 0.0; + prolongation[1](1,4) = 0.0; + prolongation[1](1,5) = 0.0; + prolongation[1](1,6) = 0.0; + prolongation[1](1,7) = 0.0; + prolongation[1](1,8) = 0.0; + prolongation[1](2,0) = 0.0; + prolongation[1](2,1) = 0.0; + prolongation[1](2,2) = 0.0; + prolongation[1](2,3) = 0.0; + prolongation[1](2,4) = 0.0; + prolongation[1](2,5) = 1.0; + prolongation[1](2,6) = 0.0; + prolongation[1](2,7) = 0.0; + prolongation[1](2,8) = 0.0; + prolongation[1](3,0) = 0.0; + prolongation[1](3,1) = 0.0; + prolongation[1](3,2) = 0.0; + prolongation[1](3,3) = 0.0; + prolongation[1](3,4) = 0.0; + prolongation[1](3,5) = 0.0; + prolongation[1](3,6) = 0.0; + prolongation[1](3,7) = 0.0; + prolongation[1](3,8) = 1.0; + prolongation[1](4,0) = -1.0/8.0; + prolongation[1](4,1) = 3.0/8.0; + prolongation[1](4,2) = 0.0; + prolongation[1](4,3) = 0.0; + prolongation[1](4,4) = 3.0/4.0; + prolongation[1](4,5) = 0.0; + prolongation[1](4,6) = 0.0; + prolongation[1](4,7) = 0.0; + prolongation[1](4,8) = 0.0; + prolongation[1](5,0) = 0.0; + prolongation[1](5,1) = 3.0/8.0; + prolongation[1](5,2) = -1.0/8.0; + prolongation[1](5,3) = 0.0; + prolongation[1](5,4) = 0.0; + prolongation[1](5,5) = 3.0/4.0; + prolongation[1](5,6) = 0.0; + prolongation[1](5,7) = 0.0; + prolongation[1](5,8) = 0.0; + prolongation[1](6,0) = 0.0; + prolongation[1](6,1) = 0.0; + prolongation[1](6,2) = 0.0; + prolongation[1](6,3) = 0.0; + prolongation[1](6,4) = 0.0; + prolongation[1](6,5) = 3.0/8.0; + prolongation[1](6,6) = 0.0; + prolongation[1](6,7) = -1.0/8.0; + prolongation[1](6,8) = 3.0/4.0; + prolongation[1](7,0) = 0.0; + prolongation[1](7,1) = 0.0; + prolongation[1](7,2) = 0.0; + prolongation[1](7,3) = 0.0; + prolongation[1](7,4) = 3.0/8.0; + prolongation[1](7,5) = 0.0; + prolongation[1](7,6) = -1.0/8.0; + prolongation[1](7,7) = 0.0; + prolongation[1](7,8) = 3.0/4.0; + prolongation[1](8,0) = -3.0/64.0; + prolongation[1](8,1) = 9.0/64.0; + prolongation[1](8,2) = -3.0/64.0; + prolongation[1](8,3) = 1.0/64.0; + prolongation[1](8,4) = 9.0/32.0; + prolongation[1](8,5) = 9.0/32.0; + prolongation[1](8,6) = -3.0/32.0; + prolongation[1](8,7) = -3.0/32.0; + prolongation[1](8,8) = 9.0/16.0; + prolongation[2](0,0) = 0.0; + prolongation[2](0,1) = 0.0; + prolongation[2](0,2) = 0.0; + prolongation[2](0,3) = 0.0; + prolongation[2](0,4) = 0.0; + prolongation[2](0,5) = 0.0; + prolongation[2](0,6) = 0.0; + prolongation[2](0,7) = 0.0; + prolongation[2](0,8) = 1.0; + prolongation[2](1,0) = 0.0; + prolongation[2](1,1) = 0.0; + prolongation[2](1,2) = 0.0; + prolongation[2](1,3) = 0.0; + prolongation[2](1,4) = 0.0; + prolongation[2](1,5) = 1.0; + prolongation[2](1,6) = 0.0; + prolongation[2](1,7) = 0.0; + prolongation[2](1,8) = 0.0; + prolongation[2](2,0) = 0.0; + prolongation[2](2,1) = 0.0; + prolongation[2](2,2) = 1.0; + prolongation[2](2,3) = 0.0; + prolongation[2](2,4) = 0.0; + prolongation[2](2,5) = 0.0; + prolongation[2](2,6) = 0.0; + prolongation[2](2,7) = 0.0; + prolongation[2](2,8) = 0.0; + prolongation[2](3,0) = 0.0; + prolongation[2](3,1) = 0.0; + prolongation[2](3,2) = 0.0; + prolongation[2](3,3) = 0.0; + prolongation[2](3,4) = 0.0; + prolongation[2](3,5) = 0.0; + prolongation[2](3,6) = 1.0; + prolongation[2](3,7) = 0.0; + prolongation[2](3,8) = 0.0; + prolongation[2](4,0) = 0.0; + prolongation[2](4,1) = 0.0; + prolongation[2](4,2) = 0.0; + prolongation[2](4,3) = 0.0; + prolongation[2](4,4) = 0.0; + prolongation[2](4,5) = 3.0/8.0; + prolongation[2](4,6) = 0.0; + prolongation[2](4,7) = -1.0/8.0; + prolongation[2](4,8) = 3.0/4.0; + prolongation[2](5,0) = 0.0; + prolongation[2](5,1) = -1.0/8.0; + prolongation[2](5,2) = 3.0/8.0; + prolongation[2](5,3) = 0.0; + prolongation[2](5,4) = 0.0; + prolongation[2](5,5) = 3.0/4.0; + prolongation[2](5,6) = 0.0; + prolongation[2](5,7) = 0.0; + prolongation[2](5,8) = 0.0; + prolongation[2](6,0) = 0.0; + prolongation[2](6,1) = 0.0; + prolongation[2](6,2) = 3.0/8.0; + prolongation[2](6,3) = -1.0/8.0; + prolongation[2](6,4) = 0.0; + prolongation[2](6,5) = 0.0; + prolongation[2](6,6) = 3.0/4.0; + prolongation[2](6,7) = 0.0; + prolongation[2](6,8) = 0.0; + prolongation[2](7,0) = 0.0; + prolongation[2](7,1) = 0.0; + prolongation[2](7,2) = 0.0; + prolongation[2](7,3) = 0.0; + prolongation[2](7,4) = -1.0/8.0; + prolongation[2](7,5) = 0.0; + prolongation[2](7,6) = 3.0/8.0; + prolongation[2](7,7) = 0.0; + prolongation[2](7,8) = 3.0/4.0; + prolongation[2](8,0) = 1.0/64.0; + prolongation[2](8,1) = -3.0/64.0; + prolongation[2](8,2) = 9.0/64.0; + prolongation[2](8,3) = -3.0/64.0; + prolongation[2](8,4) = -3.0/32.0; + prolongation[2](8,5) = 9.0/32.0; + prolongation[2](8,6) = 9.0/32.0; + prolongation[2](8,7) = -3.0/32.0; + prolongation[2](8,8) = 9.0/16.0; + prolongation[3](0,0) = 0.0; + prolongation[3](0,1) = 0.0; + prolongation[3](0,2) = 0.0; + prolongation[3](0,3) = 0.0; + prolongation[3](0,4) = 0.0; + prolongation[3](0,5) = 0.0; + prolongation[3](0,6) = 0.0; + prolongation[3](0,7) = 1.0; + prolongation[3](0,8) = 0.0; + prolongation[3](1,0) = 0.0; + prolongation[3](1,1) = 0.0; + prolongation[3](1,2) = 0.0; + prolongation[3](1,3) = 0.0; + prolongation[3](1,4) = 0.0; + prolongation[3](1,5) = 0.0; + prolongation[3](1,6) = 0.0; + prolongation[3](1,7) = 0.0; + prolongation[3](1,8) = 1.0; + prolongation[3](2,0) = 0.0; + prolongation[3](2,1) = 0.0; + prolongation[3](2,2) = 0.0; + prolongation[3](2,3) = 0.0; + prolongation[3](2,4) = 0.0; + prolongation[3](2,5) = 0.0; + prolongation[3](2,6) = 1.0; + prolongation[3](2,7) = 0.0; + prolongation[3](2,8) = 0.0; + prolongation[3](3,0) = 0.0; + prolongation[3](3,1) = 0.0; + prolongation[3](3,2) = 0.0; + prolongation[3](3,3) = 1.0; + prolongation[3](3,4) = 0.0; + prolongation[3](3,5) = 0.0; + prolongation[3](3,6) = 0.0; + prolongation[3](3,7) = 0.0; + prolongation[3](3,8) = 0.0; + prolongation[3](4,0) = 0.0; + prolongation[3](4,1) = 0.0; + prolongation[3](4,2) = 0.0; + prolongation[3](4,3) = 0.0; + prolongation[3](4,4) = 0.0; + prolongation[3](4,5) = -1.0/8.0; + prolongation[3](4,6) = 0.0; + prolongation[3](4,7) = 3.0/8.0; + prolongation[3](4,8) = 3.0/4.0; + prolongation[3](5,0) = 0.0; + prolongation[3](5,1) = 0.0; + prolongation[3](5,2) = 0.0; + prolongation[3](5,3) = 0.0; + prolongation[3](5,4) = -1.0/8.0; + prolongation[3](5,5) = 0.0; + prolongation[3](5,6) = 3.0/8.0; + prolongation[3](5,7) = 0.0; + prolongation[3](5,8) = 3.0/4.0; + prolongation[3](6,0) = 0.0; + prolongation[3](6,1) = 0.0; + prolongation[3](6,2) = -1.0/8.0; + prolongation[3](6,3) = 3.0/8.0; + prolongation[3](6,4) = 0.0; + prolongation[3](6,5) = 0.0; + prolongation[3](6,6) = 3.0/4.0; + prolongation[3](6,7) = 0.0; + prolongation[3](6,8) = 0.0; + prolongation[3](7,0) = -1.0/8.0; + prolongation[3](7,1) = 0.0; + prolongation[3](7,2) = 0.0; + prolongation[3](7,3) = 3.0/8.0; + prolongation[3](7,4) = 0.0; + prolongation[3](7,5) = 0.0; + prolongation[3](7,6) = 0.0; + prolongation[3](7,7) = 3.0/4.0; + prolongation[3](7,8) = 0.0; + prolongation[3](8,0) = -3.0/64.0; + prolongation[3](8,1) = 1.0/64.0; + prolongation[3](8,2) = -3.0/64.0; + prolongation[3](8,3) = 9.0/64.0; + prolongation[3](8,4) = -3.0/32.0; + prolongation[3](8,5) = -3.0/32.0; + prolongation[3](8,6) = 9.0/32.0; + prolongation[3](8,7) = 9.0/32.0; + prolongation[3](8,8) = 9.0/16.0; +}; + + +template <> +double +FECubicSub<2>::shape_value (const unsigned int i, + const Point<2> &p) const +{ + Assert (i +inline +double +FECubicSub<2>::linear_shape_value (const unsigned int i, + const Point<2>& p) const +{ + Assert((i<4), ExcInvalidIndex(i)); + switch (i) + { + case 0: return (1.-p(0)) * (1.-p(1)); + case 1: return p(0) * (1.-p(1)); + case 2: return p(0) * p(1); + case 3: return (1.-p(0)) * p(1); + } + return 0.; +}; + + + +template <> +Point<2> +FECubicSub<2>::shape_grad (const unsigned int i, + const Point<2> &p) const +{ + Assert (i(-(2*xi-1)*(1-eta)*(2*eta-1)+2*(1-xi)*(1-eta)*(2*eta-1), + -(1-xi)*(2*xi-1)*(2*eta-1)+2*(1-xi)*(2*xi-1)*(1-eta)); + case 1: return Point<2>((-2*xi+1)*(1-eta)*(2*eta-1)-2*xi*(1-eta)*(2*eta-1), + -xi*(-2*xi+1)*(2*eta-1)+2*xi*(-2*xi+1)*(1-eta)); + case 2: return Point<2>((-2*xi+1)*eta*(-2*eta+1)-2*xi*eta*(-2*eta+1), + xi*(-2*xi+1)*(-2*eta+1)-2*xi*(-2*xi+1)*eta); + case 3: return Point<2>(-(2*xi-1)*eta*(-2*eta+1)+2*(1-xi)*eta*(-2*eta+1), + (1-xi)*(2*xi-1)*(-2*eta+1)-2*(1-xi)*(2*xi-1)*eta); + case 4: return Point<2>(-4*xi*(1-eta)*(-2*eta+1)+4*(1-xi)*(1-eta)*(-2*eta+1), + -4*(1-xi)*xi*(-2*eta+1)-8*(1-xi)*xi*(1-eta)); + case 5: return Point<2>(4*(2*xi-1)*(1-eta)*eta+8*xi*(1-eta)*eta, + -4*xi*(2*xi-1)*eta+4*xi*(2*xi-1)*(1-eta)); + case 6: return Point<2>(-4*xi*eta*(2*eta-1)+4*(1-xi)*eta*(2*eta-1), + 4*(1-xi)*xi*(2*eta-1)+8*(1-xi)*xi*eta); + case 7: return Point<2>(-4*(-2*xi+1)*(1-eta)*eta-8*(1-xi)*(1-eta)*eta, + -4*(1-xi)*(-2*xi+1)*eta+4*(1-xi)*(-2*xi+1)*(1-eta)); + case 8: return Point<2>(16*(1-xi)*(1-eta)*eta-16*xi*eta*(1-eta), + 16*xi*(1-xi)*(1-eta)-16*(1-xi)*xi*eta); + }; + return Point<2> (); +}; + + + +template <> +inline +Point<2> +FECubicSub<2>::linear_shape_grad (const unsigned int i, + const Point<2>& p) const +{ + Assert((i<4), ExcInvalidIndex(i)); + switch (i) + { + case 0: return Point<2> (p(1)-1., p(0)-1.); + case 1: return Point<2> (1.-p(1), -p(0)); + case 2: return Point<2> (p(1), p(0)); + case 3: return Point<2> (-p(1), 1.-p(0)); + } + return Point<2> (); +}; + + + +template <> +void FECubicSub<2>::get_local_mass_matrix (const DoFHandler<2>::cell_iterator &cell, + const Boundary<2> &, + dFMatrix &local_mass_matrix) const { + Assert (local_mass_matrix.n() == total_dofs, + ExcWrongFieldDimension(local_mass_matrix.n(),total_dofs)); + Assert (local_mass_matrix.m() == total_dofs, + ExcWrongFieldDimension(local_mass_matrix.m(),total_dofs)); + +/* Get the computation of the local mass matrix by these lines in maple. Note + that tphi[i] are the basis function of the linear finite element, which + are used by the transformation (therefore >tvertex(0)(0), + cell->vertex(1)(0), + cell->vertex(2)(0), + cell->vertex(3)(0) }; + const double y[4] = { cell->vertex(0)(1), + cell->vertex(1)(1), + cell->vertex(2)(1), + cell->vertex(3)(1) }; + +/* check that the Jacobi determinant + + t0 = (-x[0]*(1.0-eta)+x[1]*(1.0-eta)+x[2]*eta-x[3]*eta) * + (-y[0]*(1.0-xi)-y[1]*xi+y[2]*xi+y[3]*(1.0-xi)) - + (-x[0]*(1.0-xi)-x[1]*xi+x[2]*xi+x[3]*(1.0-xi)) * + (-y[0]*(1.0-eta)+y[1]*(1.0-eta)+y[2]*eta-y[3]*eta) + + has the right sign. + + We do not attempt to check its (hopefully) positive sign at all points + on the unit cell, but we check that it is positive in the four corners, + which is sufficient since $det J$ is a bilinear function. +*/ + Assert ((-x[0]+x[1])*(-y[0]+y[3])-(-x[0]+x[3])*(-y[0]+y[1]), // xi=eta=0 + ExcJacobiDeterminantHasWrongSign()); + Assert ((x[2]-x[3])*(-y[0]+y[3])-(-x[0]+x[3])*(y[2]-y[3]), // xi=0, eta=1 + ExcJacobiDeterminantHasWrongSign()); + Assert ((x[2]-x[3])*(-y[1]+y[2])-(-x[1]+x[2])*(y[2]-y[3]), // xi=eta=1 + ExcJacobiDeterminantHasWrongSign()); + Assert ((-x[0]+x[1])*(-y[1]+y[2])-(-x[1]+x[2])*(-y[0]+y[1]), // xi=1, eta=0 + ExcJacobiDeterminantHasWrongSign()); + + const double t1 = (x[1]*y[0]); + const double t2 = (x[1]*y[2]); + const double t3 = (x[0]*y[3]); + const double t4 = (x[3]*y[2]); + const double t5 = (x[2]*y[3]); + const double t6 = (x[0]*y[1]); + const double t7 = (x[3]*y[1]); + const double t8 = (x[3]*y[0]); + const double t9 = (x[2]*y[1]); + const double t10 = (x[1]*y[3]); + const double t12 = (x[0]*y[2]); + const double t13 = (x[2]*y[0]); + const double t14 = (7.0/1800.0*t1-t2/450+t3/450+t4/1800-t5/1800- + 7.0/1800.0*t6+t12/600+ + t7/600-t8/450-t13/600+t9/450-t10/600); + const double t15 = (-t1/1800+t2/1800-t3/1800-t4/1800+t5/1800+ + t6/1800+t8/1800-t9/1800); + const double t16 = (t1/450-t2/1800+7.0/1800.0*t3+t4/450- + t5/450-t6/450-t12/600+t7/600 + -7.0/1800.0*t8+t13/600+t9/1800-t10/600); + const double t17 = (-7.0/900.0*t1-2.0/225.0*t3-t4/900+t5/900 + +7.0/900.0*t6+t12/900-7.0/ + 900.0*t7+2.0/225.0*t8-t13/900+7.0/900.0*t10); + const double t18 = (t1/450-t2/900+t3/900-t6/450+t12/900+ + t7/900-t8/900-t13/900+t9/900- + t10/900); + const double t19 = (t1/900+t3/450+t4/900-t5/900-t6/900 + -t12/900+t7/900-t8/450+t13/900- + t10/900); + const double t20 = (-2.0/225.0*t1+t2/900-7.0/900.0*t3+ + 2.0/225.0*t6-t12/900-7.0/900.0*t7 + +7.0/900.0*t8+t13/900-t9/900+7.0/900.0*t10); + const double t21 = (-t1/225-t3/225+t6/225-t7/225+t8/225+t10/225); + const double t23 = (t1/450-7.0/1800.0*t2+t3/1800+t4/450 + -t5/450-t6/450+t12/600-t7/600-t8 + /1800-t13/600+7.0/1800.0*t9+t10/600); + const double t24 = (-7.0/900.0*t1+2.0/225.0*t2-t4/900+t5/900 + +7.0/900.0*t6-7.0/900.0*t12 + +t7/900+7.0/900.0*t13-2.0/225.0*t9-t10/900); + const double t25 = (-2.0/225.0*t1+7.0/900.0*t2-t3/900+2.0/225.0*t6 + -7.0/900.0*t12-t7/900 + +t8/900+7.0/900.0*t13-7.0/900.0*t9+t10/900); + const double t26 = (t1/900-t2/450+t4/900-t5/900-t6/900+t12/900 + -t7/900-t13/900+t9/450+ + t10/900); + const double t27 = (-t1/225+t2/225+t6/225-t12/225+t13/225-t9/225); + const double t29 = (t1/1800-t2/450+t3/450+7.0/1800.0*t4-7.0/1800.0*t5 + -t6/1800-t12/600- + t7/600-t8/450+t13/600+t9/450+t10/600); + const double t30 = (7.0/900.0*t2-t3/900-2.0/225.0*t4+2.0/225.0*t5 + +t12/900+7.0/900.0*t7+ + t8/900-t13/900-7.0/900.0*t9-7.0/900.0*t10); + const double t31 = (-t1/900+2.0/225.0*t2-7.0/900.0*t4+7.0/900.0*t5 + +t6/900-t12/900+7.0/ + 900.0*t7+t13/900-2.0/225.0*t9-7.0/900.0*t10); + const double t32 = (-t2/900+t3/900+t4/450-t5/450-t12/900-t7/900 + -t8/900+t13/900+t9/900+ + t10/900); + const double t33 = (t2/225-t4/225+t5/225+t7/225-t9/225-t10/225); + const double t35 = (-t1/900-2.0/225.0*t3-7.0/900.0*t4+7.0/900.0*t5 + +t6/900+7.0/900.0*t12 + -t7/900+2.0/225.0*t8-7.0/900.0*t13+t10/900); + const double t36 = (t2/900-7.0/900.0*t3-2.0/225.0*t4+2.0/225.0*t5 + +7.0/900.0*t12+t7/900+ + 7.0/900.0*t8-7.0/900.0*t13-t9/900-t10/900); + const double t37 = (-t3/225-t4/225+t5/225+t12/225+t8/225-t13/225); + const double t38 = (-14.0/225.0*t1+8.0/225.0*t2-8.0/225.0*t3 + -2.0/225.0*t4+2.0/225.0*t5+ + 14.0/225.0*t6-2.0/75.0*t12-2.0/75.0*t7 + +8.0/225.0*t8+2.0/75.0*t13-8.0/225.0*t9+ + 2.0/75.0*t10); + const double t39 = (2.0/225.0*t1-2.0/225.0*t2+2.0/225.0*t3 + +2.0/225.0*t4-2.0/225.0*t5 + -2.0/225.0*t6-2.0/225.0*t8+2.0/225.0*t9); + const double t40 = (-8.0/225.0*t1+4.0/225.0*t2-4.0/225.0*t3 + +8.0/225.0*t6-4.0/225.0*t12 + -4.0/225.0*t7+4.0/225.0*t8+4.0/225.0*t13 + -4.0/225.0*t9+4.0/225.0*t10); + const double t41 = (-8.0/225.0*t1+14.0/225.0*t2-2.0/225.0*t3 + -8.0/225.0*t4+8.0/225.0*t5+ + 8.0/225.0*t6-2.0/75.0*t12+2.0/75.0*t7 + +2.0/225.0*t8+2.0/75.0*t13-14.0/225.0*t9 + -2.0/75.0*t10); + const double t42 = (-4.0/225.0*t1+8.0/225.0*t2-4.0/225.0*t4 + +4.0/225.0*t5+4.0/225.0*t6 + -4.0/225.0*t12+4.0/225.0*t7+4.0/225.0*t13 + -8.0/225.0*t9-4.0/225.0*t10); + const double t43 = (-2.0/225.0*t1+8.0/225.0*t2-8.0/225.0*t3 + -14.0/225.0*t4+14.0/225.0*t5 + +2.0/225.0*t6+2.0/75.0*t12+2.0/75.0*t7 + +8.0/225.0*t8-2.0/75.0*t13-8.0/225.0*t9 + -2.0/75.0*t10); + const double t44 = (4.0/225.0*t2-4.0/225.0*t3-8.0/225.0*t4 + +8.0/225.0*t5+4.0/225.0*t12+ + 4.0/225.0*t7+4.0/225.0*t8-4.0/225.0*t13 + -4.0/225.0*t9-4.0/225.0*t10); + const double t45 = (-8.0/225.0*t1+2.0/225.0*t2-14.0/225.0*t3 + -8.0/225.0*t4+8.0/225.0*t5+ + 8.0/225.0*t6+2.0/75.0*t12-2.0/75.0*t7 + +14.0/225.0*t8-2.0/75.0*t13-2.0/225.0*t9+ + 2.0/75.0*t10); + const double t46 = (-4.0/225.0*t1-8.0/225.0*t3-4.0/225.0*t4 + +4.0/225.0*t5+4.0/225.0*t6+ + 4.0/225.0*t12-4.0/225.0*t7+8.0/225.0*t8 + -4.0/225.0*t13+4.0/225.0*t10); + + local_mass_matrix(0,0) = (-7.0/450.0*t1+t2/450-7.0/450.0*t3 + -t4/450+t5/450+7.0/450.0*t6-t7/75 + +7.0/450.0*t8-t9/450+t10/75); + local_mass_matrix(0,1) = (t14); + local_mass_matrix(0,2) = (t15); + local_mass_matrix(0,3) = (t16); + local_mass_matrix(0,4) = (t17); + local_mass_matrix(0,5) = (t18); + local_mass_matrix(0,6) = (t19); + local_mass_matrix(0,7) = (t20); + local_mass_matrix(0,8) = (t21); + local_mass_matrix(1,0) = (t14); + local_mass_matrix(1,1) = (-7.0/450.0*t1+7.0/450.0*t2-t3/450 + -t4/450+t5/450+7.0/450.0*t6- + t12/75+t8/450+t13/75-7.0/450.0*t9); + local_mass_matrix(1,2) = (t23); + local_mass_matrix(1,3) = (t15); + local_mass_matrix(1,4) = (t24); + local_mass_matrix(1,5) = (t25); + local_mass_matrix(1,6) = (t26); + local_mass_matrix(1,7) = (t18); + local_mass_matrix(1,8) = (t27); + local_mass_matrix(2,0) = (t15); + local_mass_matrix(2,1) = (t23); + local_mass_matrix(2,2) = (-t1/450+7.0/450.0*t2-t3/450-7.0/450.0*t4 + +7.0/450.0*t5+t6/450+t7/75 + +t8/450-7.0/450.0*t9-t10/75); + local_mass_matrix(2,3) = (t29); + local_mass_matrix(2,4) = (t26); + local_mass_matrix(2,5) = (t30); + local_mass_matrix(2,6) = (t31); + local_mass_matrix(2,7) = (t32); + local_mass_matrix(2,8) = (t33); + local_mass_matrix(3,0) = (t16); + local_mass_matrix(3,1) = (t15); + local_mass_matrix(3,2) = (t29); + local_mass_matrix(3,3) = (-t1/450+t2/450-7.0/450.0*t3-7.0/450.0*t4 + +7.0/450.0*t5+t6/450+ + t12/75+7.0/450.0*t8-t13/75-t9/450); + local_mass_matrix(3,4) = (t19); + local_mass_matrix(3,5) = (t32); + local_mass_matrix(3,6) = (t35); + local_mass_matrix(3,7) = (t36); + local_mass_matrix(3,8) = (t37); + local_mass_matrix(4,0) = (t17); + local_mass_matrix(4,1) = (t24); + local_mass_matrix(4,2) = (t26); + local_mass_matrix(4,3) = (t19); + local_mass_matrix(4,4) = (t38); + local_mass_matrix(4,5) = (t27); + local_mass_matrix(4,6) = (t39); + local_mass_matrix(4,7) = (t21); + local_mass_matrix(4,8) = (t40); + local_mass_matrix(5,0) = (t18); + local_mass_matrix(5,1) = (t25); + local_mass_matrix(5,2) = (t30); + local_mass_matrix(5,3) = (t32); + local_mass_matrix(5,4) = (t27); + local_mass_matrix(5,5) = (t41); + local_mass_matrix(5,6) = (t33); + local_mass_matrix(5,7) = (t39); + local_mass_matrix(5,8) = (t42); + local_mass_matrix(6,0) = (t19); + local_mass_matrix(6,1) = (t26); + local_mass_matrix(6,2) = (t31); + local_mass_matrix(6,3) = (t35); + local_mass_matrix(6,4) = (t39); + local_mass_matrix(6,5) = (t33); + local_mass_matrix(6,6) = (t43); + local_mass_matrix(6,7) = (t37); + local_mass_matrix(6,8) = (t44); + local_mass_matrix(7,0) = (t20); + local_mass_matrix(7,1) = (t18); + local_mass_matrix(7,2) = (t32); + local_mass_matrix(7,3) = (t36); + local_mass_matrix(7,4) = (t21); + local_mass_matrix(7,5) = (t39); + local_mass_matrix(7,6) = (t37); + local_mass_matrix(7,7) = (t45); + local_mass_matrix(7,8) = (t46); + local_mass_matrix(8,0) = (t21); + local_mass_matrix(8,1) = (t27); + local_mass_matrix(8,2) = (t33); + local_mass_matrix(8,3) = (t37); + local_mass_matrix(8,4) = (t40); + local_mass_matrix(8,5) = (t42); + local_mass_matrix(8,6) = (t44); + local_mass_matrix(8,7) = (t46); + local_mass_matrix(8,8) = (-32.0/225.0*t1+32.0/225.0*t2-32.0/225.0*t3 + -32.0/225.0*t4+32.0/225.0*t5+32.0/225.0*t6 + +32.0/225.0*t8-32.0/225.0*t9); +}; + + + +template <> +void FECubicSub<2>::get_ansatz_points (const typename DoFHandler<2>::cell_iterator &cell, + const Boundary<2>&, + vector > &ansatz_points) const { + Assert (ansatz_points.size() == total_dofs, + ExcWrongFieldDimension (ansatz_points.size(), total_dofs)); + + for (unsigned int vertex=0; vertex<4; ++vertex) + ansatz_points[vertex] = cell->vertex(vertex); + + // for the bilinear mapping, the centers + // of the face on the unit cell are mapped + // to the mean coordinates of the vertices + for (unsigned int line=0; line<4; ++line) + ansatz_points[4+line] = (cell->line(line)->vertex(0) + + cell->line(line)->vertex(1)) / 2; + // same for the center of the square: + // since all four linear basis functions + // take on the value 1/4 at the center, + // the center is mapped to the mean + // coordinates of the four vertices + ansatz_points[8] = (ansatz_points[0] + + ansatz_points[1] + + ansatz_points[2] + + ansatz_points[3]) / 4; +}; + + + +template <> +void FECubicSub<2>::get_face_ansatz_points (const typename DoFHandler<2>::face_iterator &face, + const Boundary<2> &, + vector > &ansatz_points) const { + Assert (ansatz_points.size() == dofs_per_face, + ExcWrongFieldDimension (ansatz_points.size(), dofs_per_face)); + + for (unsigned int vertex=0; vertex<2; ++vertex) + ansatz_points[vertex] = face->vertex(vertex); + ansatz_points[2] = (ansatz_points[0] + ansatz_points[1]) / 2; +}; + + + +template <> +void FECubicSub<2>::get_face_jacobians (const DoFHandler<2>::face_iterator &face, + const Boundary<2> &, + const vector > &unit_points, + vector &face_jacobians) const { + // more or less copied from the linear + // finite element + Assert (unit_points.size() == face_jacobians.size(), + ExcWrongFieldDimension (unit_points.size(), face_jacobians.size())); + + // a linear mapping for a single line + // produces particularly simple + // expressions for the jacobi + // determinant :-) + const double h = sqrt((face->vertex(1) - face->vertex(0)).square()); + fill_n (face_jacobians.begin(), + unit_points.size(), + h); +}; + + + +template <> +void FECubicSub<2>::get_subface_jacobians (const DoFHandler<2>::face_iterator &face, + const unsigned int , + const vector > &unit_points, + vector &face_jacobians) const { + // more or less copied from the linear + // finite element + Assert (unit_points.size() == face_jacobians.size(), + ExcWrongFieldDimension (unit_points.size(), face_jacobians.size())); + Assert (face->at_boundary() == false, + ExcBoundaryFaceUsed ()); + + // a linear mapping for a single line + // produces particularly simple + // expressions for the jacobi + // determinant :-) + const double h = sqrt((face->vertex(1) - face->vertex(0)).square()); + fill_n (face_jacobians.begin(), + unit_points.size(), + h/2); +}; + + + +template <> +void FECubicSub<2>::get_normal_vectors (const DoFHandler<2>::cell_iterator &cell, + const unsigned int face_no, + const Boundary<2> &, + const vector > &unit_points, + vector > &normal_vectors) const { + // more or less copied from the linear + // finite element + Assert (unit_points.size() == normal_vectors.size(), + ExcWrongFieldDimension (unit_points.size(), normal_vectors.size())); + + const DoFHandler<2>::face_iterator face = cell->face(face_no); + // compute direction of line + const Point<2> line_direction = (face->vertex(1) - face->vertex(0)); + // rotate to the right by 90 degrees + const Point<2> normal_direction(line_direction(1), + -line_direction(0)); + + if (face_no <= 1) + // for sides 0 and 1: return the correctly + // scaled vector + fill (normal_vectors.begin(), normal_vectors.end(), + normal_direction / sqrt(normal_direction.square())); + else + // for sides 2 and 3: scale and invert + // vector + fill (normal_vectors.begin(), normal_vectors.end(), + normal_direction / (-sqrt(normal_direction.square()))); +}; + + + +template <> +void FECubicSub<2>::get_normal_vectors (const DoFHandler<2>::cell_iterator &cell, + const unsigned int face_no, + const unsigned int, + const vector > &unit_points, + vector > &normal_vectors) const { + // more or less copied from the linear + // finite element + // note, that in 2D the normal vectors to the + // subface have the same direction as that + // for the face + Assert (unit_points.size() == normal_vectors.size(), + ExcWrongFieldDimension (unit_points.size(), normal_vectors.size())); + Assert (cell->face(face_no)->at_boundary() == false, + ExcBoundaryFaceUsed ()); + + const DoFHandler<2>::face_iterator face = cell->face(face_no); + // compute direction of line + const Point<2> line_direction = (face->vertex(1) - face->vertex(0)); + // rotate to the right by 90 degrees + const Point<2> normal_direction(line_direction(1), + -line_direction(0)); + + if (face_no <= 1) + // for sides 0 and 1: return the correctly + // scaled vector + fill (normal_vectors.begin(), normal_vectors.end(), + normal_direction / sqrt(normal_direction.square())); + else + // for sides 2 and 3: scale and invert + // vector + fill (normal_vectors.begin(), normal_vectors.end(), + normal_direction / (-sqrt(normal_direction.square()))); +}; + +#endif + + + + + +template +void FECubicSub::fill_fe_values (const DoFHandler::cell_iterator &cell, + const vector > &unit_points, + vector &jacobians, + const bool compute_jacobians, + vector > &ansatz_points, + const bool compute_ansatz_points, + vector > &q_points, + const bool compute_q_points, + const Boundary &boundary) const { + Assert (jacobians.size() == unit_points.size(), + ExcWrongFieldDimension(jacobians.size(), unit_points.size())); + Assert (q_points.size() == unit_points.size(), + ExcWrongFieldDimension(q_points.size(), unit_points.size())); + Assert (ansatz_points.size() == total_dofs, + ExcWrongFieldDimension(ansatz_points.size(), total_dofs)); + + + unsigned int n_points=unit_points.size(); + + Point vertices[GeometryInfo::vertices_per_cell]; + for (unsigned int l=0; l::vertices_per_cell; ++l) + vertices[l] = cell->vertex(l); + + + if (compute_q_points) + { + // initialize points to zero + for (unsigned int i=0; i (); + + // note: let x_l be the vector of the + // lth quadrature point in real space and + // xi_l that on the unit cell, let further + // p_j be the vector of the jth vertex + // of the cell in real space and + // N_j(xi_l) be the value of the associated + // basis function at xi_l, then + // x_l(xi_l) = sum_j p_j N_j(xi_l) + // + // Here, N_j is the *linear* basis function, + // not that of the finite element, since we + // use a subparametric mapping + for (unsigned int j=0; j::vertices_per_cell; ++j) + for (unsigned int l=0; l::vertices_per_cell; ++s) + { + // we want the linear transform, + // so use that function + const Point gradient = linear_shape_grad (s, unit_points[l]); + for (unsigned int i=0; i; +