From: Martin Kronbichler Date: Thu, 20 Mar 2025 08:18:21 +0000 (+0100) Subject: Do not inline an expensive function X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=45b0c19c0e5c1d15119a1eac3d2a1f77dac5c7ac;p=dealii.git Do not inline an expensive function --- diff --git a/include/deal.II/lac/sparsity_pattern.h b/include/deal.II/lac/sparsity_pattern.h index 485af6a966..276f9d8c36 100644 --- a/include/deal.II/lac/sparsity_pattern.h +++ b/include/deal.II/lac/sparsity_pattern.h @@ -776,26 +776,6 @@ public: bool empty() const; - /** - * Check if a value at a certain position may be non-zero. - */ - bool - exists(const size_type i, const size_type j) const; - - /** - * This is the inverse operation to operator()(): given a global index, find - * out row and column of the matrix entry to which it belongs. The returned - * value is the pair composed of row and column index. - * - * This function may only be called if the sparsity pattern is closed. The - * global index must then be between zero and n_nonzero_elements(). - * - * If N is the number of rows of this matrix, then the complexity - * of this function is log(N). - */ - std::pair - matrix_position(const std::size_t global_index) const; - /** * Compute the bandwidth of the matrix represented by this structure. The * bandwidth is the maximum of $|i-j|$ for which the index pair $(i,j)$ @@ -891,6 +871,12 @@ public: size_type operator()(const size_type i, const size_type j) const; + /** + * Check if a value at a certain position may be non-zero. + */ + bool + exists(const size_type i, const size_type j) const; + /** * Access to column number field. Return the column number of the * indexth entry in row. Note that if diagonal elements @@ -904,6 +890,20 @@ public: size_type column_number(const size_type row, const unsigned int index) const; + /** + * This is the inverse operation to operator()(): given a global index, find + * out row and column of the matrix entry to which it belongs. The returned + * value is the pair composed of row and column index. + * + * This function may only be called if the sparsity pattern is closed. The + * global index must then be between zero and n_nonzero_elements(). + * + * If N is the number of rows of this matrix, then the complexity + * of this function is log(N). + */ + std::pair + matrix_position(const std::size_t global_index) const; + /** * The index of a global matrix entry in its row. * @@ -1394,35 +1394,6 @@ SparsityPattern::end(const size_type r) const -inline bool -SparsityPattern::operator==(const SparsityPattern &sp2) const -{ - if (store_diagonal_first_in_row != sp2.store_diagonal_first_in_row) - return false; - - // it isn't quite necessary to compare *all* member variables. by only - // comparing the essential ones, we can say that two sparsity patterns are - // equal even if one is compressed and the other is not (in which case some - // of the member variables are not yet set correctly) - if (rows != sp2.rows || cols != sp2.cols || compressed != sp2.compressed) - return false; - - if (rows > 0) - { - for (size_type i = 0; i < rows + 1; ++i) - if (rowstart[i] != sp2.rowstart[i]) - return false; - - for (size_type i = 0; i < rowstart[rows]; ++i) - if (colnums[i] != sp2.colnums[i]) - return false; - } - - return true; -} - - - namespace internal { namespace SparsityPatternTools diff --git a/source/lac/sparsity_pattern.cc b/source/lac/sparsity_pattern.cc index 0cbdba67fe..28b64cad80 100644 --- a/source/lac/sparsity_pattern.cc +++ b/source/lac/sparsity_pattern.cc @@ -627,6 +627,44 @@ SparsityPattern::empty() const +SparsityPattern::size_type +SparsityPattern::operator()(const size_type i, const size_type j) const +{ + Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject()); + AssertIndexRange(i, n_rows()); + AssertIndexRange(j, n_cols()); + Assert(compressed, ExcNotCompressed()); + + // let's see whether there is something in this line + if (rowstart[i] == rowstart[i + 1]) + return invalid_entry; + + // If special storage of diagonals was requested, we can get the diagonal + // element faster by this query. + if (store_diagonal_first_in_row && (i == j)) + return rowstart[i]; + + // all other entries are sorted, so we can use a binary search algorithm + // + // note that the entries are only sorted upon compression, so this would + // fail for non-compressed sparsity patterns; however, that is why the + // Assertion is at the top of this function, so it may not be called for + // noncompressed structures. + const size_type *sorted_region_start = + (store_diagonal_first_in_row ? &colnums[rowstart[i] + 1] : + &colnums[rowstart[i]]); + const size_type *const p = + Utilities::lower_bound(sorted_region_start, + &colnums[rowstart[i + 1]], + j); + if ((p != &colnums[rowstart[i + 1]]) && (*p == j)) + return (p - colnums.get()); + else + return invalid_entry; +} + + + bool SparsityPattern::exists(const size_type i, const size_type j) const { @@ -669,6 +707,24 @@ SparsityPattern::matrix_position(const std::size_t global_index) const +SparsityPattern::size_type +SparsityPattern::row_position(const size_type i, const size_type j) const +{ + Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject()); + AssertIndexRange(i, n_rows()); + AssertIndexRange(j, n_cols()); + + for (size_type k = rowstart[i]; k < rowstart[i + 1]; ++k) + { + // entry exists + if (colnums[k] == j) + return k - rowstart[i]; + } + return numbers::invalid_size_type; +} + + + SparsityPattern::size_type SparsityPattern::bandwidth() const { @@ -709,44 +765,6 @@ SparsityPattern::max_entries_per_row() const -SparsityPattern::size_type -SparsityPattern::operator()(const size_type i, const size_type j) const -{ - Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject()); - AssertIndexRange(i, n_rows()); - AssertIndexRange(j, n_cols()); - Assert(compressed, ExcNotCompressed()); - - // let's see whether there is something in this line - if (rowstart[i] == rowstart[i + 1]) - return invalid_entry; - - // If special storage of diagonals was requested, we can get the diagonal - // element faster by this query. - if (store_diagonal_first_in_row && (i == j)) - return rowstart[i]; - - // all other entries are sorted, so we can use a binary search algorithm - // - // note that the entries are only sorted upon compression, so this would - // fail for non-compressed sparsity patterns; however, that is why the - // Assertion is at the top of this function, so it may not be called for - // noncompressed structures. - const size_type *sorted_region_start = - (store_diagonal_first_in_row ? &colnums[rowstart[i] + 1] : - &colnums[rowstart[i]]); - const size_type *const p = - Utilities::lower_bound(sorted_region_start, - &colnums[rowstart[i + 1]], - j); - if ((p != &colnums[rowstart[i + 1]]) && (*p == j)) - return (p - colnums.get()); - else - return invalid_entry; -} - - - void SparsityPattern::add(const size_type i, const size_type j) { @@ -871,20 +889,31 @@ SparsityPattern::symmetrize() -SparsityPattern::size_type -SparsityPattern::row_position(const size_type i, const size_type j) const +bool +SparsityPattern::operator==(const SparsityPattern &sp2) const { - Assert((rowstart != nullptr) && (colnums != nullptr), ExcEmptyObject()); - AssertIndexRange(i, n_rows()); - AssertIndexRange(j, n_cols()); + if (store_diagonal_first_in_row != sp2.store_diagonal_first_in_row) + return false; - for (size_type k = rowstart[i]; k < rowstart[i + 1]; ++k) + // it isn't quite necessary to compare *all* member variables. by only + // comparing the essential ones, we can say that two sparsity patterns are + // equal even if one is compressed and the other is not (in which case some + // of the member variables are not yet set correctly) + if (rows != sp2.rows || cols != sp2.cols || compressed != sp2.compressed) + return false; + + if (rows > 0) { - // entry exists - if (colnums[k] == j) - return k - rowstart[i]; + for (size_type i = 0; i < rows + 1; ++i) + if (rowstart[i] != sp2.rowstart[i]) + return false; + + for (size_type i = 0; i < rowstart[rows]; ++i) + if (colnums[i] != sp2.colnums[i]) + return false; } - return numbers::invalid_size_type; + + return true; }