From: bangerth Date: Mon, 6 Nov 2006 05:09:31 +0000 (+0000) Subject: Finish X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=4dc910d2e1323cf866c6ae4b61ac8162199e6fe3;p=dealii-svn.git Finish git-svn-id: https://svn.dealii.org/trunk@14162 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-25/Makefile b/deal.II/examples/step-25/Makefile index f291d79ad6..fbbd2faa9e 100644 --- a/deal.II/examples/step-25/Makefile +++ b/deal.II/examples/step-25/Makefile @@ -58,10 +58,10 @@ include $D/common/Make.global_options # # You may need to augment the lists of libraries when compiling your # program for other dimensions, or when using third party libraries -libs.g = $(lib-deal2-2d.g) \ +libs.g = $(lib-deal2-1d.g) \ $(lib-lac.g) \ $(lib-base.g) -libs.o = $(lib-deal2-2d.o) \ +libs.o = $(lib-deal2-1d.o) \ $(lib-lac.o) \ $(lib-base.o) diff --git a/deal.II/examples/step-25/step-25.cc b/deal.II/examples/step-25/step-25.cc index 6f46ce1b74..4cdb772447 100644 --- a/deal.II/examples/step-25/step-25.cc +++ b/deal.II/examples/step-25/step-25.cc @@ -69,7 +69,47 @@ using namespace dealii; // the dimension-independent // class-encapsulation of the problem, the // reader should consult step-3 and step-4. -//TODO + // + // Compared to step-23 and step-24, there + // isn't much newsworthy in the general + // structure of the program (though there is + // of course in the inner working of the + // various functions!). The most notable + // difference is the presence of the two new + // functions compute_nl_term and + // compute_nl_matrix that + // compute the nonlinear contributions to the + // matrix and right hand sides of the first + // equation, as discussed in the + // Introduction. In addition, we have to have + // a vector update_solution that + // contains the nonlinear update to the + // solution vector in each Newton step. + // + // As also mentioned in the introduction, we + // do not store the velocity variable in this + // program, but the mass matrix times the + // velocity. This is done in the + // M_x_velocity variable (the + // "x" is intended to stand for + // "times"). + // + // Finally, the + // output_timestep_skip variable + // stores every how many time steps graphical + // output is to be generated. This is of + // importance when using fine meshes (and + // consequently small time steps) where we + // would run lots of time steps and create + // lots of output files of solutions that + // look almost the same in subsequent + // files. This only clogs up our + // visualization procedures and we should + // avoid creating more output than we are + // really interested in. Therefore, if this + // variable is to a value $n$ bigger than + // one, output is generated only every $n$th + // time step. template class SineGordonProblem { @@ -87,7 +127,7 @@ class SineGordonProblem const Vector &new_data, SparseMatrix &nl_matrix) const; unsigned int solve (); - void output_results (const unsigned int timestep_number); + void output_results (const unsigned int timestep_number) const; Triangulation triangulation; FE_Q fe; @@ -98,15 +138,17 @@ class SineGordonProblem SparseMatrix mass_matrix; SparseMatrix laplace_matrix; - double time, final_time, time_step; - double theta; + const unsigned int n_global_refinements; + + double time; + const double final_time, time_step; + const double theta; - Vector solution, d_solution, old_solution; - Vector massmatxvel; + Vector solution, update_solution, old_solution; + Vector M_x_velocity; Vector system_rhs; - static const unsigned int output_timestep_skip = 1; - static const int n_global_refinements = 6; + const unsigned int output_timestep_skip; }; @@ -278,10 +320,12 @@ SineGordonProblem::SineGordonProblem () : fe (1), dof_handler (triangulation), + n_global_refinements (6), time (-5.4414), final_time (2.7207), time_step (10*1./std::pow(2.,n_global_refinements)), - theta (0.5) + theta (0.5), + output_timestep_skip (1) {} // @sect4{SineGordonProblem::make_grid_and_dofs} @@ -336,9 +380,9 @@ void SineGordonProblem::make_grid_and_dofs () laplace_matrix); solution.reinit (dof_handler.n_dofs()); - d_solution.reinit (dof_handler.n_dofs()); + update_solution.reinit (dof_handler.n_dofs()); old_solution.reinit (dof_handler.n_dofs()); - massmatxvel.reinit (dof_handler.n_dofs()); + M_x_velocity.reinit (dof_handler.n_dofs()); system_rhs.reinit (dof_handler.n_dofs()); } @@ -399,7 +443,7 @@ void SineGordonProblem::assemble_system () tmp_matrix.vmult (tmp_vector, old_solution); system_rhs -= tmp_vector; - system_rhs.add (-time_step, massmatxvel); + system_rhs.add (-time_step, M_x_velocity); tmp_vector = 0; compute_nl_term (old_solution, solution, tmp_vector); @@ -599,7 +643,7 @@ void SineGordonProblem::compute_nl_matrix (const Vector &old_data, // equation of the split formulation. The // solution to the system is, in fact, // $\delta U^n_l$ so it is stored in - // d_solution and used to update + // update_solution and used to update // solution in the // run function. // @@ -636,8 +680,8 @@ SineGordonProblem::solve () PreconditionSSOR<> preconditioner; preconditioner.initialize(system_matrix, 1.2); - d_solution = 0; - cg.solve (system_matrix, d_solution, + update_solution = 0; + cg.solve (system_matrix, update_solution, system_rhs, preconditioner); @@ -651,7 +695,8 @@ SineGordonProblem::solve () // respective functions in step-23 and // step-24: template -void SineGordonProblem::output_results (const unsigned int timestep_number) +void +SineGordonProblem::output_results (const unsigned int timestep_number) const { DataOut data_out; @@ -766,7 +811,7 @@ void SineGordonProblem::run () const unsigned int n_iterations = solve (); - solution += d_solution; + solution += update_solution; if (first_iteration == true) std::cout << " " << n_iterations; @@ -790,15 +835,15 @@ void SineGordonProblem::run () // update $MV^n$ directly: Vector tmp_vector (solution.size()); laplace_matrix.vmult (tmp_vector, solution); - massmatxvel.add (-time_step*theta, tmp_vector); + M_x_velocity.add (-time_step*theta, tmp_vector); tmp_vector = 0; laplace_matrix.vmult (tmp_vector, old_solution); - massmatxvel.add (-time_step*(1-theta), tmp_vector); + M_x_velocity.add (-time_step*(1-theta), tmp_vector); tmp_vector = 0; compute_nl_term (old_solution, solution, tmp_vector); - massmatxvel.add (-time_step, tmp_vector); + M_x_velocity.add (-time_step, tmp_vector); // Oftentimes, in particular for fine // meshes, we must pick the time step