From: Wolfgang Bangerth Date: Sat, 13 Feb 2010 04:35:01 +0000 (+0000) Subject: Highlight the glossary term. Capitalize them all. X-Git-Tag: v8.0.0~6474 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=4e33f94a91b5964f853ea32c0e87529d6d3b0da0;p=dealii.git Highlight the glossary term. Capitalize them all. git-svn-id: https://svn.dealii.org/trunk@20587 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/doc/doxygen/headers/glossary.h b/deal.II/doc/doxygen/headers/glossary.h index 062ce39d0e..6d0829db53 100644 --- a/deal.II/doc/doxygen/headers/glossary.h +++ b/deal.II/doc/doxygen/headers/glossary.h @@ -22,10 +22,10 @@ * *
* - *
@anchor GlossActive Active cells
+ *
@anchor GlossActive Active cells
*
Mesh cells not refined any further in the hierarchy.
* - *
@anchor GlossBlock block
+ *
@anchor GlossBlock Block
*
Blocks were introduced in BlockVector, * BlockSparseMatrix and related classes. These are used to reflect the * structure of a PDE system in linear algebra, in particular allowing @@ -51,7 +51,7 @@ * step_22 "step-22" or @ref step_31 "step-31" tutorial programs, as opposed * to @ref step_20 "step-20").
* - *
@anchor GlossComponent component
+ *
@anchor GlossComponent Component
* *
For vector functions, component denotes the index in the * vector. For instance, in the mixed Laplacian system, the first @@ -65,8 +65,8 @@ * FiniteElement
* * - *
@anchor GlossCompress Compressing distributed - * vectors and matrices
+ *
@anchor GlossCompress Compressing distributed + * vectors and matrices
* *
* For %parallel computations, deal.II uses the vector and matrix @@ -126,7 +126,7 @@ *
* * - *
@anchor GlossDistorted Distorted cells
+ *
@anchor GlossDistorted Distorted cells
* *
A distorted cell is a cell for which the mapping from * the reference cell to real cell has a Jacobian whose determinant is @@ -231,7 +231,7 @@ * the center of the cell. * * - *
@anchor GlossFaceOrientation Face orientation
+ *
@anchor GlossFaceOrientation Face orientation
*
In a triangulation, the normal vector to a face * can be deduced from the face orientation by * applying the right hand side rule (x,y -> normal). We note, that @@ -269,7 +269,7 @@ * the QProjector class and its users. * * - *
@anchor GlossGeneralizedSupport Generalized support points
+ *
@anchor GlossGeneralizedSupport Generalized support points
*
While @ref GlossSupport "support points" allow very simple interpolation * into the finite element space, their concept is restricted to * @ref GlossLagrange "Lagrange elements". For other elements, more general @@ -288,7 +288,7 @@ *
* * - *
@anchor hp_paper %hp paper
+ *
@anchor hp_paper %hp paper
*
The "hp paper" is a paper by W. Bangerth and O. Kayser-Herold, titled * "Data Structures and Requirements for hp Finite Element Software", that * describes many of the algorithms and data structures used in the implementation @@ -322,7 +322,7 @@ Article{BK07, *
* * - *
@anchor GlossInterpolation Interpolation with finite elements
+ *
@anchor GlossInterpolation Interpolation with finite elements
*
The purpose of interpolation with finite elements is computing * a vector of coefficients representing a finite element function, * such that the @ref GlossNodes "node values" of the original @@ -333,12 +333,12 @@ Article{BK07, * vector. * * - *
@anchor GlossLagrange Lagrange elements
+ *
@anchor GlossLagrange Lagrange elements
*
Finite elements based on Lagrangian interpolation at * @ref GlossSupport "support points".
* * - *
@anchor mg_paper %Multigrid paper
+ *
@anchor mg_paper %Multigrid paper
*
The "multigrid paper" is a paper by B. Janssen and G. Kanschat, titled * "Adaptive multilevel methods with local smoothing", that * describes many of the algorithms and data structures used in the implementation @@ -361,7 +361,7 @@ Article{JK10, *
* * - *
@anchor GlossNodes Node values or node functionals
+ *
@anchor GlossNodes Node values or node functionals
* *
It is customary to define a FiniteElement as a pair consisting * of a local function space and a set of node values $N_i$ on the @@ -398,8 +398,8 @@ Article{JK10, * Gauss points on edges(faces) and anisotropic Gauss points in the interior * * - *
@anchor GlossPrimitive Primitive finite - * elements
Finite element shape function sets with a unique + *
@anchor GlossPrimitive Primitive finite + * elements
Finite element shape function sets with a unique * relation from shape function number to vector @ref GlossComponent * "component". What this means is that each shape function of a * vector-valued element has exactly one-nonzero component if an @@ -414,16 +414,16 @@ Article{JK10, * there, each vector-value shape function may have several non-zero * components.
* - *
@anchor GlossReferenceCell Reference cell
+ *
@anchor GlossReferenceCell Reference cell
*
The hypercube [0,1]dim, on which all parametric finite * element shape functions are defined.
* * - *
@anchor GlossShape Shape functions
The restriction of + *
@anchor GlossShape Shape functions
The restriction of * the finite element basis functions to a single grid cell.
* * - *
@anchor SubdomainId Subdomain id
+ *
@anchor SubdomainId Subdomain id
*
Each cell of a triangulation has associated with it a property called * the "subdomain id" that can be queried using a call like * cell-@>subdomain_id() and that can be set for example by using @@ -447,7 +447,7 @@ Article{JK10, *
* * - *
@anchor GlossSupport Support points
Support points are + *
@anchor GlossSupport Support points
Support points are * by definition those points $p_i$, such that for the shape functions * $v_j$ holds $v_j(p_i) = \delta_{ij}$. Therefore, a finite element * interpolation can be defined uniquely by the values in the support @@ -468,18 +468,18 @@ Article{JK10, *
* * - *
@anchor GlossTargetComponent Target component
When + *
@anchor GlossTargetComponent Target component
When * vectors and matrices are grouped into blocks by component, it is * often desirable to collect several of the original components into * a single one. This could be for instance, grouping the velocities * of a Stokes system into a single block.
* * - *
@anchor GlossUnitCell Unit cell
+ *
@anchor GlossUnitCell Unit cell
*
See @ref GlossReferenceCell "Reference cell".
* * - *
@anchor GlossUnitSupport Unit support points
+ *
@anchor GlossUnitSupport Unit support points
*
These are the @ref GlossSupport "support points" on the reference cell, defined in * FiniteElementBase. For example, the usual Q1 element in 1d has support * points at x=0 and x=1 (and similarly, in higher