From: David Wells Date: Mon, 19 Jul 2021 21:55:02 +0000 (-0400) Subject: Fix cell->face(0)->measure() for tets. X-Git-Tag: v9.4.0-rc1~1133^2~1 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=4eae65bfd6f1c24c5b20efdfd828e66bdf4c34b1;p=dealii.git Fix cell->face(0)->measure() for tets. Fortunately its easy to find the area of a triangle. --- diff --git a/source/grid/tria_accessor.cc b/source/grid/tria_accessor.cc index b9f459ff22..aacd4828e9 100644 --- a/source/grid/tria_accessor.cc +++ b/source/grid/tria_accessor.cc @@ -1324,123 +1324,152 @@ namespace double measure(const TriaAccessor<2, dim, 3> &accessor) { - // If the face is planar, the diagonal from vertex 0 to vertex 3, - // v_03, should be in the plane P_012 of vertices 0, 1 and 2. Get - // the normal vector of P_012 and test if v_03 is orthogonal to - // that. If so, the face is planar and computing its area is simple. - const Tensor<1, 3> v01 = accessor.vertex(1) - accessor.vertex(0); - const Tensor<1, 3> v02 = accessor.vertex(2) - accessor.vertex(0); - - const Tensor<1, 3> normal = cross_product_3d(v01, v02); - - const Tensor<1, 3> v03 = accessor.vertex(3) - accessor.vertex(0); - - // check whether v03 does not lie in the plane of v01 and v02 - // (i.e., whether the face is not planar). we do so by checking - // whether the triple product (v01 x v02) * v03 forms a positive - // volume relative to |v01|*|v02|*|v03|. the test checks the - // squares of these to avoid taking norms/square roots: - if (std::abs((v03 * normal) * (v03 * normal) / - ((v03 * v03) * (v01 * v01) * (v02 * v02))) >= 1e-24) + if (accessor.reference_cell() == ReferenceCells::Quadrilateral) { - // If the vectors are non planar we integrate the norm of the normal - // vector using a numerical Gauss scheme of order 4. In particular we - // consider a bilinear quad x(u,v) = (1-v)((1-u)v_0 + u v_1) + - // v((1-u)v_2 + u v_3), consequently we compute the normal vector as - // n(u,v) = t_u x t_v = w_1 + u w_2 + v w_3. The integrand function is - // || n(u,v) || = sqrt(a + b u^2 + c v^2 + d u + e v + f uv). - // We integrate it using a QGauss<2> (4) computed explicitly. - const Tensor<1, 3> w_1 = - cross_product_3d(accessor.vertex(1) - accessor.vertex(0), - accessor.vertex(2) - accessor.vertex(0)); - const Tensor<1, 3> w_2 = - cross_product_3d(accessor.vertex(1) - accessor.vertex(0), - accessor.vertex(3) - accessor.vertex(2) - - accessor.vertex(1) + accessor.vertex(0)); - const Tensor<1, 3> w_3 = - cross_product_3d(accessor.vertex(3) - accessor.vertex(2) - - accessor.vertex(1) + accessor.vertex(0), - accessor.vertex(2) - accessor.vertex(0)); - - double a = scalar_product(w_1, w_1); - double b = scalar_product(w_2, w_2); - double c = scalar_product(w_3, w_3); - double d = scalar_product(w_1, w_2); - double e = scalar_product(w_1, w_3); - double f = scalar_product(w_2, w_3); - - return 0.03025074832140047 * - std::sqrt(a + 0.0048207809894260144 * b + - 0.0048207809894260144 * c + 0.13886368840594743 * d + - 0.13886368840594743 * e + - 0.0096415619788520288 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.0048207809894260144 * b + - 0.10890625570683385 * c + 0.13886368840594743 * d + - 0.66001895641514374 * e + 0.045826333352825557 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.0048207809894260144 * b + - 0.44888729929169013 * c + 0.13886368840594743 * d + - 1.3399810435848563 * e + 0.09303735505312187 * f) + - 0.03025074832140047 * - std::sqrt(a + 0.0048207809894260144 * b + - 0.86595709258347853 * c + 0.13886368840594743 * d + - 1.8611363115940525 * e + 0.12922212642709538 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.10890625570683385 * b + - 0.0048207809894260144 * c + 0.66001895641514374 * d + - 0.13886368840594743 * e + 0.045826333352825557 * f) + - 0.10632332575267359 * - std::sqrt(a + 0.10890625570683385 * b + - 0.10890625570683385 * c + 0.66001895641514374 * d + - 0.66001895641514374 * e + 0.2178125114136677 * f) + - 0.10632332575267359 * - std::sqrt(a + 0.10890625570683385 * b + - 0.44888729929169013 * c + 0.66001895641514374 * d + - 1.3399810435848563 * e + 0.44220644500147605 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.10890625570683385 * b + - 0.86595709258347853 * c + 0.66001895641514374 * d + - 1.8611363115940525 * e + 0.61419262306231814 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.44888729929169013 * b + - 0.0048207809894260144 * c + 1.3399810435848563 * d + - 0.13886368840594743 * e + 0.09303735505312187 * f) + - 0.10632332575267359 * - std::sqrt(a + 0.44888729929169013 * b + - 0.10890625570683385 * c + 1.3399810435848563 * d + - 0.66001895641514374 * e + 0.44220644500147605 * f) + - 0.10632332575267359 * - std::sqrt(a + 0.44888729929169013 * b + - 0.44888729929169013 * c + 1.3399810435848563 * d + - 1.3399810435848563 * e + 0.89777459858338027 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.44888729929169013 * b + - 0.86595709258347853 * c + 1.3399810435848563 * d + - 1.8611363115940525 * e + 1.2469436885317342 * f) + - 0.03025074832140047 * - std::sqrt(a + 0.86595709258347853 * b + - 0.0048207809894260144 * c + 1.8611363115940525 * d + - 0.13886368840594743 * e + 0.12922212642709538 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.86595709258347853 * b + - 0.10890625570683385 * c + 1.8611363115940525 * d + - 0.66001895641514374 * e + 0.61419262306231814 * f) + - 0.056712962962962937 * - std::sqrt(a + 0.86595709258347853 * b + - 0.44888729929169013 * c + 1.8611363115940525 * d + - 1.3399810435848563 * e + 1.2469436885317342 * f) + - 0.03025074832140047 * - std::sqrt(a + 0.86595709258347853 * b + - 0.86595709258347853 * c + 1.8611363115940525 * d + - 1.8611363115940525 * e + 1.7319141851669571 * f); + // If the face is planar, the diagonal from vertex 0 to vertex 3, + // v_03, should be in the plane P_012 of vertices 0, 1 and 2. Get + // the normal vector of P_012 and test if v_03 is orthogonal to + // that. If so, the face is planar and computing its area is simple. + const Tensor<1, 3> v01 = accessor.vertex(1) - accessor.vertex(0); + const Tensor<1, 3> v02 = accessor.vertex(2) - accessor.vertex(0); + + const Tensor<1, 3> normal = cross_product_3d(v01, v02); + + const Tensor<1, 3> v03 = accessor.vertex(3) - accessor.vertex(0); + + // check whether v03 does not lie in the plane of v01 and v02 + // (i.e., whether the face is not planar). we do so by checking + // whether the triple product (v01 x v02) * v03 forms a positive + // volume relative to |v01|*|v02|*|v03|. the test checks the + // squares of these to avoid taking norms/square roots: + if (std::abs((v03 * normal) * (v03 * normal) / + ((v03 * v03) * (v01 * v01) * (v02 * v02))) >= 1e-24) + { + // If the vectors are non planar we integrate the norm of the normal + // vector using a numerical Gauss scheme of order 4. In particular + // we consider a bilinear quad x(u,v) = (1-v)((1-u)v_0 + u v_1) + + // v((1-u)v_2 + u v_3), consequently we compute the normal vector as + // n(u,v) = t_u x t_v = w_1 + u w_2 + v w_3. The integrand function + // is + // || n(u,v) || = sqrt(a + b u^2 + c v^2 + d u + e v + f uv). + // We integrate it using a QGauss<2> (4) computed explicitly. + const Tensor<1, 3> w_1 = + cross_product_3d(accessor.vertex(1) - accessor.vertex(0), + accessor.vertex(2) - accessor.vertex(0)); + const Tensor<1, 3> w_2 = + cross_product_3d(accessor.vertex(1) - accessor.vertex(0), + accessor.vertex(3) - accessor.vertex(2) - + accessor.vertex(1) + accessor.vertex(0)); + const Tensor<1, 3> w_3 = + cross_product_3d(accessor.vertex(3) - accessor.vertex(2) - + accessor.vertex(1) + accessor.vertex(0), + accessor.vertex(2) - accessor.vertex(0)); + + double a = scalar_product(w_1, w_1); + double b = scalar_product(w_2, w_2); + double c = scalar_product(w_3, w_3); + double d = scalar_product(w_1, w_2); + double e = scalar_product(w_1, w_3); + double f = scalar_product(w_2, w_3); + + return 0.03025074832140047 * + std::sqrt( + a + 0.0048207809894260144 * b + + 0.0048207809894260144 * c + 0.13886368840594743 * d + + 0.13886368840594743 * e + 0.0096415619788520288 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.0048207809894260144 * b + 0.10890625570683385 * c + + 0.13886368840594743 * d + 0.66001895641514374 * e + + 0.045826333352825557 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.0048207809894260144 * b + 0.44888729929169013 * c + + 0.13886368840594743 * d + 1.3399810435848563 * e + + 0.09303735505312187 * f) + + 0.03025074832140047 * + std::sqrt( + a + 0.0048207809894260144 * b + 0.86595709258347853 * c + + 0.13886368840594743 * d + 1.8611363115940525 * e + + 0.12922212642709538 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.10890625570683385 * b + 0.0048207809894260144 * c + + 0.66001895641514374 * d + 0.13886368840594743 * e + + 0.045826333352825557 * f) + + 0.10632332575267359 * std::sqrt(a + 0.10890625570683385 * b + + 0.10890625570683385 * c + + 0.66001895641514374 * d + + 0.66001895641514374 * e + + 0.2178125114136677 * f) + + 0.10632332575267359 * std::sqrt(a + 0.10890625570683385 * b + + 0.44888729929169013 * c + + 0.66001895641514374 * d + + 1.3399810435848563 * e + + 0.44220644500147605 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.10890625570683385 * b + 0.86595709258347853 * c + + 0.66001895641514374 * d + 1.8611363115940525 * e + + 0.61419262306231814 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.44888729929169013 * b + 0.0048207809894260144 * c + + 1.3399810435848563 * d + 0.13886368840594743 * e + + 0.09303735505312187 * f) + + 0.10632332575267359 * std::sqrt(a + 0.44888729929169013 * b + + 0.10890625570683385 * c + + 1.3399810435848563 * d + + 0.66001895641514374 * e + + 0.44220644500147605 * f) + + 0.10632332575267359 * + std::sqrt(a + 0.44888729929169013 * b + + 0.44888729929169013 * c + + 1.3399810435848563 * d + 1.3399810435848563 * e + + 0.89777459858338027 * f) + + 0.056712962962962937 * + std::sqrt(a + 0.44888729929169013 * b + + 0.86595709258347853 * c + + 1.3399810435848563 * d + 1.8611363115940525 * e + + 1.2469436885317342 * f) + + 0.03025074832140047 * std::sqrt(a + 0.86595709258347853 * b + + 0.0048207809894260144 * c + + 1.8611363115940525 * d + + 0.13886368840594743 * e + + 0.12922212642709538 * f) + + 0.056712962962962937 * + std::sqrt( + a + 0.86595709258347853 * b + 0.10890625570683385 * c + + 1.8611363115940525 * d + 0.66001895641514374 * e + + 0.61419262306231814 * f) + + 0.056712962962962937 * + std::sqrt(a + 0.86595709258347853 * b + + 0.44888729929169013 * c + + 1.8611363115940525 * d + 1.3399810435848563 * e + + 1.2469436885317342 * f) + + 0.03025074832140047 * + std::sqrt(a + 0.86595709258347853 * b + + 0.86595709258347853 * c + + 1.8611363115940525 * d + 1.8611363115940525 * e + + 1.7319141851669571 * f); + } + + // the face is planar. then its area is 1/2 of the norm of the + // cross product of the two diagonals + const Tensor<1, 3> v12 = accessor.vertex(2) - accessor.vertex(1); + const Tensor<1, 3> twice_area = cross_product_3d(v03, v12); + return 0.5 * twice_area.norm(); + } + else if (accessor.reference_cell() == ReferenceCells::Triangle) + { + // We can just use the normal triangle area formula without issue + const Tensor<1, 3> v01 = accessor.vertex(1) - accessor.vertex(0); + const Tensor<1, 3> v02 = accessor.vertex(2) - accessor.vertex(0); + return 0.5 * cross_product_3d(v01, v02).norm(); } - // the face is planar. then its area is 1/2 of the norm of the - // cross product of the two diagonals - const Tensor<1, 3> v12 = accessor.vertex(2) - accessor.vertex(1); - const Tensor<1, 3> twice_area = cross_product_3d(v03, v12); - return 0.5 * twice_area.norm(); + Assert(false, ExcNotImplemented()); + return 0.0; }