From: Wolfgang Bangerth Date: Thu, 24 Jun 2010 02:17:05 +0000 (+0000) Subject: Split out periodicity computation into its own function. X-Git-Tag: v8.0.0~5961 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=506ff21e3f630e5f451f7d429303eb5eea085b6b;p=dealii.git Split out periodicity computation into its own function. git-svn-id: https://svn.dealii.org/trunk@21308 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-45/step-45.cc b/deal.II/examples/step-45/step-45.cc index be9ef9cba5..ad7ccae831 100644 --- a/deal.II/examples/step-45/step-45.cc +++ b/deal.II/examples/step-45/step-45.cc @@ -135,30 +135,86 @@ LaplaceProblem::LaplaceProblem () // @sect4{LaplaceProblem::make_grid_and_dofs} + // The following is the first function to be + // called in run(). It sets up + // the mesh and degrees of freedom. + // + // We start by creating the usual square mesh + // and changing the boundary indicator on the + // parts of the boundary where we have + // Dirichlet boundary conditions (top and + // bottom, i.e. faces two and three of the + // reference cell as defined by + // GeometryInfo), so that we can distinguish + // between the parts of the boundary where + // periodic and where Dirichlet boundary + // conditions hold. We then refine the mesh a + // fixed number of times, with child faces + // inheriting the boundary indicators + // previously set on the coarse mesh from + // their parents. void LaplaceProblem::make_grid_and_dofs () { GridGenerator::hyper_cube (triangulation); - // We change the boundary indicator on the - // parts of the boundary, where we have - // Dirichlet boundary conditions, to one - // such that we can distinguish between the - // parts of the boundary, where periodic - // and where Dirichlet boundary conditions - // hold. - Triangulation<2>::active_cell_iterator cell = triangulation.begin_active (); - - cell->face (2)->set_boundary_indicator (1); - cell->face (3)->set_boundary_indicator (1); + triangulation.begin_active ()->face (2)->set_boundary_indicator (1); + triangulation.begin_active ()->face (3)->set_boundary_indicator (1); triangulation.refine_global (5); - // Here the degrees of freedom are - // distributed. + + // The next step is to distribute the + // degrees of freedom and produce a little + // bit of graphical output: dof_handler.distribute_dofs (fe); std::cout << "Number of active cells: " << triangulation.n_active_cells () << std::endl << "Degrees of freedom: " << dof_handler.n_dofs () << std::endl; - // Now it is the time for the constraint + + // Now it is the time for the constraints + // that come from the periodicity + // constraints. We do this in the + // following, separate function, after + // clearing any possible prior content from + // the constraints object: + constraints.clear (); + make_periodicity_constraints (); + + // We also incorporate the homogeneous + // Dirichlet boundary conditions on the + // upper and lower parts of the boundary + // (i.e. the ones with boundary indicator + // 1) and close the + // ConstraintMatrix object: + VectorTools::interpolate_boundary_values (dof_handler, 1, + ZeroFunction<2> (), + constraints); + constraints.close (); + + // Then we create the sparsity pattern and + // the system matrix and initialize the + // solution and right-hand side + // vectors. This is again as in step-3 or + // step-6, for example: + CompressedSparsityPattern c_sparsity_pattern (dof_handler.n_dofs(), + dof_handler.n_dofs()); + DoFTools::make_sparsity_pattern (dof_handler, + c_sparsity_pattern, + constraints, + false); + c_sparsity_pattern.compress (); + sparsity_pattern.copy_from (c_sparsity_pattern); + + system_matrix.reinit (sparsity_pattern); + system_rhs.reinit (dof_handler.n_dofs()); + solution.reinit (dof_handler.n_dofs()); +} + + + + // @sect4{LaplaceProblem::make_periodicity_constraints} + +void LaplaceProblem::make_periodicity_constraints () +{ // matrix. The first constraints we put in // are the periodic boundary // conditions. For this let us consider the @@ -184,7 +240,6 @@ void LaplaceProblem::make_grid_and_dofs () // the boundary degree of freedom together // with the y-component of the vertex on // which it is located. - constraints.clear (); std::vector > dof_locations; @@ -237,34 +292,10 @@ void LaplaceProblem::make_grid_and_dofs () break; } } - // Finally we have to set the homogeneous - // Dirichlet boundary conditions on the - // upper and lower parts of the boundary - // and close the - // ConstraintMatrix object. - VectorTools::interpolate_boundary_values (dof_handler, 1, - ZeroFunction<2> (), - constraints); - constraints.close (); - // Then we create the sparsity pattern and - // the system matrix and initialize the - // solution and right-hand side vectors. - const unsigned int n_dofs = dof_handler.n_dofs (); - - CompressedSparsityPattern c_sparsity_pattern (n_dofs, n_dofs); - DoFTools::make_sparsity_pattern (dof_handler, - c_sparsity_pattern, - constraints, - false); - c_sparsity_pattern.compress (); - sparsity_pattern.copy_from (c_sparsity_pattern); - - system_matrix.reinit (sparsity_pattern); - system_rhs.reinit (n_dofs); - solution.reinit (n_dofs); } + // @sect4{LaplaceProblem::assemble_system} // Assembling the system matrix and the