From: guido Date: Fri, 9 Jan 2004 12:33:27 +0000 (+0000) Subject: mark QGaussN as deprecated X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=53aa898b8e826bd98b6b933a41d96a064591bfe6;p=dealii-svn.git mark QGaussN as deprecated git-svn-id: https://svn.dealii.org/trunk@8295 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/include/base/quadrature_lib.h b/deal.II/base/include/base/quadrature_lib.h index 78fbab9130..da05e878a6 100644 --- a/deal.II/base/include/base/quadrature_lib.h +++ b/deal.II/base/include/base/quadrature_lib.h @@ -22,7 +22,7 @@ * Gauss-Legendre quadrature of arbitrary order. * * The coefficients of these quadrature rules are computed by the - * function found in @p{Numerical Recipies}. For lower order + * function found in Numerical Recipies. For lower order * quadrature rules, the use of this class is thus equivalent to the * use of the @ref{QGauss1} through @ref{QGauss7} classes, for which * the coefficients are hardcoded, but this class can provide higher @@ -35,9 +35,9 @@ class QGauss : public Quadrature { public: /** - * Generate a formula with @p{p} + * Generate a formula with p * quadrature points, exact for - * polynomials of degree @p{2p-1}. + * polynomials of degree 2p-1. */ QGauss (const unsigned int p); }; @@ -46,6 +46,8 @@ class QGauss : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 2-Point-Gauss quadrature formula, exact for polynomials of degree 3. * * Reference: Ward Cheney, David Kincaid: "Numerical Mathematics and Computing". @@ -61,6 +63,8 @@ class QGauss2 : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 3-Point-Gauss quadrature formula, exact for polynomials of degree 5. * * Reference: Ward Cheney, David Kincaid: "Numerical Mathematics and Computing". @@ -76,6 +80,8 @@ class QGauss3 : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 4-Point-Gauss quadrature formula, exact for polynomials of degree 7. * * Reference: Ward Cheney, David Kincaid: "Numerical Mathematics and Computing". @@ -91,6 +97,8 @@ class QGauss4 : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 5-Point-Gauss quadrature formula, exact for polynomials of degree 9. * * Reference: Ward Cheney, David Kincaid: "Numerical Mathematics and Computing". @@ -106,6 +114,8 @@ class QGauss5 : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 6-Point-Gauss quadrature formula, exact for polynomials of degree 11. * We have not found explicit * representations of the zeros of the Legendre functions of sixth @@ -126,6 +136,8 @@ class QGauss6 : public Quadrature /** + * @deprecated Use QGauss for arbitrary order Gauss formulae instead! + * * 7-Point-Gauss quadrature formula, exact for polynomials of degree 13. * We have not found explicit * representations of the zeros of the Legendre functions of sixth