From: Wolfgang Bangerth Date: Wed, 22 Mar 2000 11:54:48 +0000 (+0000) Subject: Doc updates. X-Git-Tag: v8.0.0~20767 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=5438c050d9311a319f73bacf2f8d6b48a5cc4ff7;p=dealii.git Doc updates. git-svn-id: https://svn.dealii.org/trunk@2608 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/base/include/base/tensor.h b/deal.II/base/include/base/tensor.h index 28e799caef..4fc6362ee1 100644 --- a/deal.II/base/include/base/tensor.h +++ b/deal.II/base/include/base/tensor.h @@ -152,7 +152,7 @@ class Tensor void unroll(Vector & result) const; -/** + /** * Reset all values to zero. */ void clear (); @@ -362,11 +362,18 @@ DeclException1 (ExcInvalidTensorIndex, << "Invalid tensor index " << arg1); +/** + * Contract a tensor of rank 2 with a tensor of rank 1. The result is + * #dest[i] = sum_j src1[i][j] src2[j]#. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<1,dim> &dest, const Tensor<2,dim> &src1, - const Tensor<1,dim> &src2) { + const Tensor<1,dim> &src2) +{ dest.clear (); for (unsigned int i=0; i &dest, }; + +/** + * Contract a tensor of rank 2 with a tensor of rank 2. The result is + * #dest[i][k] = sum_j src1[i][j] src2[j][k]#. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<2,dim> &dest, const Tensor<2,dim> &src1, - const Tensor<2,dim> &src2) { + const Tensor<2,dim> &src2) +{ dest.clear (); for (unsigned int i=0; i &dest, }; + +/** + * Contract a tensor of rank 2 with a tensor of rank 2. The + * contraction is performed over index #index1# of the first tensor, + * and #index2# of the second tensor. Thus, if #index1==2#, + * #index2==1#, the result is the usual contraction, but if for + * example #index1==1#, #index2==2#, then the result is + * #dest[i][k] = sum_j src1[j][i] src2[k][j]#. + * + * Note that the number of the index is counted from 1 on, not from + * zero as usual. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<2,dim> &dest, const Tensor<2,dim> &src1, const unsigned int index1, - const Tensor<2,dim> &src2, const unsigned int index2) { + const Tensor<2,dim> &src2, const unsigned int index2) +{ dest.clear (); switch (index1) @@ -443,11 +473,23 @@ void contract (Tensor<2,dim> &dest, }; + +/** + * Contract a tensor of rank 3 with a tensor of rank 1. The + * contraction is performed over index #index1# of the first + * tensor. + * + * Note that the number of the index is counted from 1 on, not from + * zero as usual. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<2,dim> &dest, const Tensor<3,dim> &src1, const unsigned int index1, - const Tensor<1,dim> &src2) { + const Tensor<1,dim> &src2) +{ dest.clear (); switch (index1) @@ -479,11 +521,19 @@ void contract (Tensor<2,dim> &dest, }; + +/** + * Contract a tensor of rank 3 with a tensor of rank 2. The result is + * #dest[i][j][l] = sum_k src1[i][j][k] src2[k][l]#. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<3,dim> &dest, const Tensor<3,dim> &src1, - const Tensor<2,dim> &src2) { + const Tensor<2,dim> &src2) +{ dest.clear (); for (unsigned int i=0; i &dest, }; + +/** + * Contract a tensor of rank 2 with a tensor of rank 3. The result is + * #dest[i][j][l] = sum_k src1[i][k] src2[k][j][l]#. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<3,dim> &dest, const Tensor<2,dim> &src1, - const Tensor<3,dim> &src2) { + const Tensor<3,dim> &src2) +{ dest.clear (); for (unsigned int i=0; i &dest, }; +/** + * Contract a tensor of rank 3 with a tensor of rank 3. The result is + * #dest[i][j][k][l] = sum_m src1[i][j][m] src2[m][k][l]#. + * + * @author Wolfgang Bangerth, 1998 + */ template inline void contract (Tensor<4,dim> &dest, const Tensor<3,dim> &src1, - const Tensor<3,dim> &src2) { + const Tensor<3,dim> &src2) +{ dest.clear (); for (unsigned int i=0; i &dest, }; +/** + * Compute the determinant of a tensor of arbitrary rank and dimension + * one. Since this is a number, the return value is, of course, the + * number itself. + * + * @author Wolfgang Bangerth, 1998 + */ template inline -double determinant (const Tensor &t) { +double determinant (const Tensor &t) +{ // determinant of tensors of - // dimension one and arbitrary rank can - // be computed by recursion + // dimension one and arbitrary rank + // can be computed by recursion. we + // need therefore not try to access + // the number itself, which is + // difficult since it needs #rank# + // indirections, which is not + // computable in the general + // template return determinant(t[0]); }; + +/** + * Compute the determinant of a tensor of rank one and dimension + * one. Since this is a number, the return value is, of course, the + * number itself. + * + * @author Wolfgang Bangerth, 1998 + */ inline -double determinant (const Tensor<1,1> &t) { +double determinant (const Tensor<1,1> &t) +{ return t[0]; }; + +/** + * Compute the determinant of a tensor or rank 2, here for #dim==2#. + * + * @author Wolfgang Bangerth, 1998 + */ inline -double determinant (const Tensor<2,2> &t) { +double determinant (const Tensor<2,2> &t) +{ return ((t[0][0] * t[1][1]) - (t[1][0] * t[0][1])); }; + + +/** + * Compute the determinant of a tensor or rank 2, here for #dim==3#. + * + * @author Wolfgang Bangerth, 1998 + */ inline -double determinant (const Tensor<2,3> &t) { +double determinant (const Tensor<2,3> &t) +{ // get this using Maple: // with(linalg); // a := matrix(3,3);