From: Martin Kronbichler Date: Fri, 3 Mar 2017 09:09:59 +0000 (+0100) Subject: Merge X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=55287a3157e63f1dd078883622be79ed9bbd6bb8;p=release-papers.git Merge --- 55287a3157e63f1dd078883622be79ed9bbd6bb8 diff --cc 8.5/paper.tex index e061129,24d199a..f7061cf --- a/8.5/paper.tex +++ b/8.5/paper.tex @@@ -30,9 -27,11 +30,12 @@@ \hypersetup{ pdfauthor={ Wolfgang Bangerth, - Denis Davydov - Timo Heister - Martin Kronbichler + Denis Davydov, + Timo Heister, + Luca Heltai, ++ Martin Kronbichler, + Matthias Maier, + Jean-Paul Pelteret }, pdftitle={The deal.II Library, Version 8.5, 2017}, } @@@ -56,12 -55,28 +59,34 @@@ Clemson, SC 29634, USA. {\texttt{heister@clemson.edu}}} - \author[4]{Martin Kronbichler} - \affil[4]{Institute for Computational Mechanics, + \author[4]{Luca Heltai} + \affil[4]{SISSA, + International School for Advanced Studies, - Via Bonomea 265, ++ Via Bonomea 265, + 34136, Trieste, Italy + {\texttt{luca.heltai@sissa.it}}} + -\author[5]{Matthias Maier} -\affil[5]{School of Mathematics, ++\author[5]{Martin Kronbichler} ++\affil[5]{Institute for Computational Mechanics, + Technical University of Munich, + Boltzmannstr.~15, 85748 Garching, Germany. + {\texttt{kronbichler@lnm.mw.tum.de}}} + ++\author[6]{Matthias Maier} ++\affil[6]{School of Mathematics, + University of Minnesota, + 127 Vincent Hall, 206 Church Street SE, + Minneapolis, MN 55455, USA, + {\texttt{msmaier@umn.edu}}} - -\author[6]{Jean-Paul Pelteret} -\affil[6]{Chair of Applied Mechanics, - University of Erlangen-Nuremberg, - Egerlandstr.\ 5, - 91058 Erlangen, ++ ++\author[7]{Jean-Paul Pelteret} ++\affil[7]{Chair of Applied Mechanics, ++ University of Erlangen-Nuremberg, ++ Egerlandstr.\ 5, ++ 91058 Erlangen, + Germany. + {\texttt{jean-paul.pelteret@fau.de}}} + \renewcommand{\labelitemi}{--} @@@ -139,169 -157,28 +167,182 @@@ release announcement \subsection{The \texttt{CellDataStorage} class} + TODO: Denis and Jean-Paul + \subsection{The \texttt{MappingManifold} class} - \subsection{Linear operators with Trilinos?} + TODO: Luca + + \subsection{TODO: Linear operators with Payload and Trilinos} + + TODO: Jean-Paul and Matthias + + \subsection{The physics module} + + A dedicated physics module has been created to facilitate the implementation of functions and classes that relate to continuum physics, physical fields and material constitutive laws. + To date, it includes transformations of scalar or tensorial quantities between any two configurations, and some definitions typically utilized in both linear and finite-strain nonlinear elasticity. - \subsection{The physics module?} + The \verb!Physics::Transformations! namespace offers push-forward and pull-back operations in the context of contravariant, covariant and Piola transformations, as well as rotation operations for Euclidean space. + In the \verb!Physics::Elasticity::Kinematics! namespace, a selection of deformation, strain tensors and strain rate tensors are defined. + The \verb!Physics::Elasticity::StandardTensors! class provides some frequently used second and fourth order metric tensors, and defines some referential and spatial projection operators and tensor derivatives as commonly required in the definition of material laws. +\subsection{Scalability of geometric multigrid framework} + +For the new release, the geometric multigrid in \dealii{} have been thoroughly +overhauled regarding their scalability on large-scale parallel computers. To +this end, the geometric multigrid algorithm based on the fast matrix-free +kernels from \cite{KronbichlerKormann2012} have been benchmarked up to +147,456 cores. Several scalability bottlenecks have been removed, including +unnecessary inner products inside the Chebyshev smoother and +$\mathcal O(n_\text{levels})$ global communication steps during the +restriction process rather than only the single global communication step that +is necessary when going to the coarest grid. New matrix-free transfer +implementations called \texttt{MGTransferMatrixFree} were devised that replace +the matrix-based \texttt{MGTransferPrebuilt}. Besides better scalability than +the Trilinos Epetra matrices underlying the latter, the matrix-free transfer +is also a much better for high-order elements with complexity per degree of +freedom of $\mathcal O(d p)$ in the polynomial degree $p$ in $d$ dimensions +rather than $\mathcal O(p^d)$ for the matrix-based approach. + +\begin{figure} +\pgfplotstableread{ +nprocs fem256k fem2m fem16m fem128m fem1g fem8g +16 0.640934 4.97684 nan nan nan nan +32 0.325741 2.51771 nan nan nan nan +64 0.1645 1.2823 nan nan nan nan +128 0.090898 0.658832 5.00366 nan nan nan +256 0.059922 0.339999 2.56216 nan nan nan +512 0.0455449 0.176482 1.29986 nan nan nan +1024 0.0368049 0.099691 0.67364 6.48155 nan nan +2048 0.0348921 0.069573 0.356066 2.59601 nan nan +4096 0.0367949 0.056833 0.19293 1.3251 nan nan +8192 0.033958 0.045350 0.110485 0.790214 5.50143 nan +16384 0.0379629 0.049351 0.099904 0.424692 2.81479 nan +32768 0.0461671 0.051276 0.077546 0.229114 1.53091 nan +65536 0.0466189 0.058941 0.075194 0.127353 0.819 6.2909 +147456 nan nan nan 0.087949 0.43213 2.90856 +}\scalinglarge +\pgfplotstableread{ +nprocs newdg256k newdg2m newdg16m olddg256k olddg2m olddg16m +28 1.4398 12.2014 nan 1.458725 12.25674 nan +56 0.6987 6.2015 nan 0.721993 6.266567 nan +112 0.3352 3.1782 nan 0.353412 3.263585 nan +224 0.1888 1.5687 12.8235 0.183643 1.611967 13.03189 +448 0.0853 0.7686 6.5649 0.105388 0.805367 6.700762 +896 0.0478 0.3537 3.3685 0.063270 0.383875 3.446427 +1792 0.0317 0.1717 1.7061 0.046065 0.199738 1.762310 +3584 0.0235 0.1079 0.8580 0.042032 0.123113 0.902782 +7168 0.0207 0.0668 0.4328 0.037678 0.091822 0.462007 +14336 0.0183699 0.045095 0.23276 0.038804 0.071644 0.288911 +}\scalingHSW +\centering +\definecolor{gnuplot@green}{RGB}{0,158,115} +\begin{tikzpicture} + \begin{loglogaxis}[ + title style={at={(0.5,0.965)},anchor=north,draw=black,fill=white,font=\scriptsize\bf}, + title={strong and weak scaling, continuous $\mathcal Q_3$ elements}, + width=0.53\textwidth, + height=0.5\textwidth, + xlabel={Number of cores}, + ylabel={Solver time [s]}, + x label style={at={(0.5,0.02)}}, + y label style={at={(0.05,0.5)}}, + xtick={32,128,512,2048,8192,32768,147456}, + xticklabels={32,128,512,2048,8192,32k,147k}, + tick label style={font=\scriptsize}, + label style={font=\scriptsize}, + legend style={font=\scriptsize}, + legend pos=south west, + ymin=5e-3, ymax=15, + xmin=8, xmax=147456, + grid + ] + \addplot table[x={nprocs}, y={fem8g}] {\scalinglarge}; + \addlegendentry{8B cells}; + \addplot table[x={nprocs}, y={fem1g}] {\scalinglarge}; + \addlegendentry{1B cells}; + \addplot table[x={nprocs}, y={fem128m}] {\scalinglarge}; + \addlegendentry{128M cells}; + \addplot table[x={nprocs}, y={fem16m}] {\scalinglarge}; + \addlegendentry{16M cells}; + \addplot[gnuplot@green,mark=diamond*,mark options={fill=gnuplot@green!40}] table[x={nprocs}, y={fem2m}] {\scalinglarge}; + \addlegendentry{2M cells}; + \addplot[dashed,black] coordinates { + (8,10) + (147456,5/9168) + }; + \addlegendentry{linear scaling}; + \addplot[dashed,black] coordinates { + (16,8*5) + (147456,8*5/9168) + }; + \addplot[dashed,black] coordinates { + (16,64*5) + (147456,64*5/9168) + }; + \addplot[dashed,black] coordinates { + (16,5*512) + (147456,5*512/9168) + }; + \addplot[dashed,black] coordinates { + (16,5*4096) + (147456,5*4096/9168) + }; + \end{loglogaxis} + \end{tikzpicture} + \begin{tikzpicture} + \begin{loglogaxis}[ + title style={at={(1,0.965)},anchor=north east,draw=black,fill=white,font=\scriptsize\bf}, + title={$256^3$ mesh, discontinuous $\mathcal Q_3$ elements}, + width=0.48\textwidth, + height=0.5\textwidth, + xlabel={Number of cores}, + x label style={at={(0.5,0.02)}}, + xtick={56,224,896,3584,14336}, + xticklabels={56,224,896,3584,14336}, + tick label style={font=\scriptsize}, + label style={font=\scriptsize}, + legend style={font=\scriptsize}, + legend pos=south west, + xmin=28, xmax=14336, + ymin=5e-3, ymax=15, + grid + ] + \addplot[blue,mark=*,densely dashed] table[x={nprocs}, y={olddg16m}] {\scalingHSW}; + \addlegendentry{old, 16M cells}; + \addplot[blue,mark=o] table[x={nprocs}, y={newdg16m}] {\scalingHSW}; + \addlegendentry{new, 16M cells}; + \addplot[red,mark=square*,densely dashed] table[x={nprocs}, y={olddg2m}] {\scalingHSW}; + \addlegendentry{old, 2M cells}; + \addplot[red,mark=square] table[x={nprocs}, y={newdg2m}] {\scalingHSW}; + \addlegendentry{new, 2M cells}; + \addplot[gnuplot@green,mark=diamond*,densely dashed] table[x={nprocs}, y={olddg256k}] {\scalingHSW}; + \addlegendentry{old, 256k cells}; + \addplot[gnuplot@green,mark=diamond] table[x={nprocs}, y={newdg256k}] {\scalingHSW}; + \addlegendentry{new, 256k cells}; + \end{loglogaxis} + \end{tikzpicture} + \caption{Scaling of multigrid algorithms on SuperMUC.} +\label{fig:scaling_mg} +\end{figure} + +The scalability of the improved geometric multigrid framework is shown in +Fig.~\ref{fig:scaling_mg}, including a combined strong and weak scalability +plot in the left panel using continuous $\mathcal Q_3$ elements on 57 million +to 232 billion degrees of freedom for the Laplacian. Along each line, the same +problem size is solved with an increasing number of cores, whereas different +lines always start out at 3.5 million degrees of freedom per core. Almost +ideal scalability down to approximately 0.1 seconds can be observed also on +147k cores. The right panel of Fig.~\ref{fig:scaling_mg} shows the effect of +the aforementioned algorithmic improvements on a setup with discontinuous DG +elements, clearly improving the latency of the multigrid V-cycle. The improved +algorithms are shown in the updated step-37 tutorial program. + + + \subsection{The \texttt{FE\_Enriched} class} -TODO: Denis +TODO: Denis \subsection{The \texttt{FE\_Series} namespace} @@@ -479,15 -356,7 +520,16 @@@ T.~Heister was partially supported by t Geodynamics initiative (CIG), through the National Science Foundation under Award No. EAR-0949446 and The University of California -- Davis, and National Science Foundation grant DMS1522191. +M.~Kronbichler was partially supported by the German Research Foundation (DFG) +under the project ``High-order discontinuous Galerkin for the exa-scale'' +(ExaDG) within the priority program ``Software for Exascale Computing'' +(SPPEXA), grant agreement no.~KR4661/2-1, the Bayerisches Kompetenznetzwerk +f\"ur Technisch-Wissenschaftliches Hoch- und H\"ochstleistungsrechnen +(KONWIHR), and the Gauss Centre for Supercomputing e.V.~by providing computing +time on the GCS Supercomputer SuperMUC at Leibniz Supercomputing Centre (LRZ) +through project id pr83te. + + J-P.~Pelteret was supported by the European Research Council (ERC) through the Advanced Grant 289049 MOCOPOLY. The Interdisciplinary Center for Scientific Computing (IWR) at Heidelberg University has provided hosting services for the \dealii{} web page and the SVN archive.