From: Reza Rastak Date: Wed, 24 Apr 2019 21:02:05 +0000 (-0700) Subject: asterisk removed from notation in DerivativeForm X-Git-Tag: v9.1.0-rc1~173^2~1 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=58b7bc2ae89af9da537475e06bd03f855ff2c7dd;p=dealii.git asterisk removed from notation in DerivativeForm --- diff --git a/include/deal.II/base/derivative_form.h b/include/deal.II/base/derivative_form.h index 10f99f5e44..c04add52f2 100644 --- a/include/deal.II/base/derivative_form.h +++ b/include/deal.II/base/derivative_form.h @@ -120,7 +120,7 @@ public: /** * Compute the volume element associated with the jacobian of the * transformation $\mathbf F$. That is to say if $DF$ is square, it computes - * $\det(DF)$, in case DF is not square returns $\sqrt{\det(DF^T * DF)}$. + * $\det(DF)$, in case DF is not square returns $\sqrt{\det(DF^T \,DF)}$. */ Number determinant() const; @@ -153,7 +153,7 @@ public: private: /** - * Auxiliary function that computes (*this) * $T^{T}$ + * Auxiliary function that computes [*this] $T^{T}$ */ DerivativeForm<1, dim, spacedim, Number> times_T_t(const Tensor<2, dim, Number> &T) const; @@ -407,7 +407,7 @@ apply_transformation(const DerivativeForm<1, dim, spacedim, Number> &grad_F, /** * Similar to the previous apply_transformation(). * Each row of the result corresponds to one of the rows of @p D_X transformed - * by @p grad_F, equivalent to $\text{D\_X} * \text{grad\_F}^T$ in matrix notation. + * by @p grad_F, equivalent to $\text{D\_X} \, \text{grad\_F}^T$ in matrix notation. * * @relatesalso DerivativeForm * @author Sebastian Pauletti, 2011, Reza Rastak, 2019 @@ -427,7 +427,7 @@ apply_transformation(const DerivativeForm<1, dim, spacedim, Number> &grad_F, /** * Similar to the previous apply_transformation(). In matrix notation, it - * computes $DF2 * DF1^{T}$. Moreover, the result of this operation $\mathbf A$ + * computes $DF2 \, DF1^{T}$. Moreover, the result of this operation $\mathbf A$ * can be interpreted as a metric tensor in * ${\mathbb R}^\text{spacedim}$ which corresponds to the Euclidean metric * tensor in