From: Martin Kronbichler Date: Fri, 13 Jan 2017 17:47:45 +0000 (+0100) Subject: Cleanup step-37 regarding shared_ptr usage. X-Git-Tag: v8.5.0-rc1~246^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=5d5b46b64fa665015bb72524a9eb5460980bafbd;p=dealii.git Cleanup step-37 regarding shared_ptr usage. --- diff --git a/examples/step-37/step-37.cc b/examples/step-37/step-37.cc index 9d8d1a0c82..e987776ac1 100644 --- a/examples/step-37/step-37.cc +++ b/examples/step-37/step-37.cc @@ -719,12 +719,10 @@ namespace Step37 DoFHandler dof_handler; ConstraintMatrix constraints; - std_cxx11::shared_ptr > system_mf_storage; typedef LaplaceOperator SystemMatrixType; SystemMatrixType system_matrix; MGConstrainedDoFs mg_constrained_dofs; - MGLevelObject > mg_mf_storage; typedef LaplaceOperator LevelMatrixType; MGLevelObject mg_matrices; @@ -760,7 +758,6 @@ namespace Step37 #endif fe (degree_finite_element), dof_handler (triangulation), - system_mf_storage(new MatrixFree()), pcout (std::cout, Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0), // The LaplaceProblem class holds an additional output stream that // collects detailed timings about the setup phase. This stream, called @@ -788,16 +785,19 @@ namespace Step37 // Once we have created the multigrid dof_handler and the constraints, we // can call the reinit function for the global matrix operator as well as // each level of the multigrid scheme. The main action is to set up the - // MatrixFree instance for the problem. For this, we need to - // activate the update flag in the AdditionalData field of MatrixFree that - // enables the storage of quadrature point coordinates in real space (by - // default, it only caches data for gradients (inverse transposed Jacobians) - // and JxW values). Note that if we call the reinit function without - // specifying the level (i.e., giving level = - // numbers::invalid_unsigned_int), MatrixFree constructs a loop over - // the active cells. In this tutorial, we do not use threads in addition to - // MPI, which is why we explicitly disable it by setting the - // MatrixFree::AdditionalData::tasks_parallel_scheme to + // MatrixFree instance for the problem. The base class of the + // LaplaceOperator class, MatrixFreeOperators::Base, is + // initialized with a shared pointer to MatrixFree object. This way, we can + // simply create it here and then pass it on to the system matrix and level + // matrices, respectively. For setting up MatrixFree, we need to activate + // the update flag in the AdditionalData field of MatrixFree that enables + // the storage of quadrature point coordinates in real space (by default, it + // only caches data for gradients (inverse transposed Jacobians) and JxW + // values). Note that if we call the reinit function without specifying the + // level (i.e., giving level = numbers::invalid_unsigned_int), + // MatrixFree constructs a loop over the active cells. In this tutorial, we + // do not use threads in addition to MPI, which is why we explicitly disable + // it by setting the MatrixFree::AdditionalData::tasks_parallel_scheme to // MatrixFree::AdditionalData::none. Finally, the coefficient is evaluated // and vectors are initialized as explained above. template @@ -841,11 +841,13 @@ namespace Step37 MatrixFree::AdditionalData::none; additional_data.mapping_update_flags = (update_gradients | update_JxW_values | update_quadrature_points); + std_cxx11::shared_ptr > + system_mf_storage(new MatrixFree()); system_mf_storage->reinit (dof_handler, constraints, QGauss<1>(fe.degree+1), additional_data); + system_matrix.initialize (system_mf_storage); } - system_matrix.initialize (system_mf_storage); system_matrix.evaluate_coefficient(Coefficient()); system_matrix.initialize_dof_vector(solution); @@ -867,7 +869,6 @@ namespace Step37 // the levels rather than the active cells. const unsigned int nlevels = triangulation.n_global_levels(); mg_matrices.resize(0, nlevels-1); - mg_mf_storage.resize(0, nlevels-1); std::set dirichlet_boundary; dirichlet_boundary.insert(0); @@ -890,13 +891,13 @@ namespace Step37 additional_data.mapping_update_flags = (update_gradients | update_JxW_values | update_quadrature_points); additional_data.level_mg_handler = level; - - mg_mf_storage[level].reinit(dof_handler, level_constraints, + std_cxx11::shared_ptr > + mg_mf_storage_level(new MatrixFree()); + mg_mf_storage_level->reinit(dof_handler, level_constraints, QGauss<1>(fe.degree+1), additional_data); - mg_matrices[level].initialize( - std_cxx11::make_shared>(mg_mf_storage[level]), - mg_constrained_dofs, level); + mg_matrices[level].initialize(mg_mf_storage_level, mg_constrained_dofs, + level); mg_matrices[level].evaluate_coefficient(Coefficient()); } setup_time += time.wall_time(); @@ -910,8 +911,9 @@ namespace Step37 // The assemble function is very simple since all we have to do is to // assemble the right hand side. Thanks to FEEvaluation and all the data - // cached in the MatrixFree class, this can be done in a few lines. Since - // this call is not wrapped into a MatrixFree::cell_loop (which would be an + // cached in the MatrixFree class, which we query from + // MatrixFreeOperators::Base, this can be done in a few lines. Since this + // call is not wrapped into a MatrixFree::cell_loop (which would be an // alternative), we must not forget to call compress() at the end of the // assembly to send all the contributions of the right hand side to the // owner of the respective degree of freedom. @@ -921,8 +923,8 @@ namespace Step37 Timer time; system_rhs = 0; - FEEvaluation phi(*system_mf_storage); - for (unsigned int cell=0; celln_macro_cells(); ++cell) + FEEvaluation phi(*system_matrix.get_matrix_free()); + for (unsigned int cell=0; celln_macro_cells(); ++cell) { phi.reinit(cell); for (unsigned int q=0; q