From: Wolfgang Bangerth Date: Fri, 14 Jul 2023 18:25:13 +0000 (-0600) Subject: Small markup fixes. X-Git-Tag: relicensing~675^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=5dd18a45970f29d7046d43a8e1adf34011de6077;p=dealii.git Small markup fixes. --- diff --git a/examples/step-33/step-33.cc b/examples/step-33/step-33.cc index 78c2d288c9..2d0b7ab60d 100644 --- a/examples/step-33/step-33.cc +++ b/examples/step-33/step-33.cc @@ -1633,7 +1633,7 @@ namespace Step33 // $\mathbf{z}_i$ is the $i$th vector valued test function. // Furthermore, the scalar product // $\left(\mathbf{F}(\mathbf{w}), \nabla\mathbf{z}_i\right)_K$ is - // understood as $\int_K \sum_{c=1}^{\text{n\_components}} + // understood as $\int_K \sum_{c=1}^{\text{n_components}} // \sum_{d=1}^{\text{dim}} \mathbf{F}(\mathbf{w})_{cd} // \frac{\partial z^c_i}{x_d}$ where $z^c_i$ is the $c$th component of // the $i$th test function. @@ -1812,21 +1812,21 @@ namespace Step33 // @f{eqnarray*}{ // R_i &=& // \left(\frac{(\mathbf{w}_{n+1} - - // \mathbf{w}_n)_{\text{component\_i}}}{\delta - // t},(\mathbf{z}_i)_{\text{component\_i}}\right)_K + // \mathbf{w}_n)_{\text{component_i}}}{\delta + // t},(\mathbf{z}_i)_{\text{component_i}}\right)_K // \\ &-& \sum_{d=1}^{\text{dim}} \left( \theta \mathbf{F} - // ({\mathbf{w}^k_{n+1}})_{\text{component\_i},d} + (1-\theta) - // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component\_i},d} , - // \frac{\partial(\mathbf{z}_i)_{\text{component\_i}}} {\partial + // ({\mathbf{w}^k_{n+1}})_{\text{component_i},d} + (1-\theta) + // \mathbf{F} ({\mathbf{w}_{n}})_{\text{component_i},d} , + // \frac{\partial(\mathbf{z}_i)_{\text{component_i}}} {\partial // x_d}\right)_K // \\ &+& \sum_{d=1}^{\text{dim}} h^{\eta} \left( \theta \frac{\partial - // (\mathbf{w}^k_{n+1})_{\text{component\_i}}}{\partial x_d} + (1-\theta) - // \frac{\partial (\mathbf{w}_n)_{\text{component\_i}}}{\partial x_d} , - // \frac{\partial (\mathbf{z}_i)_{\text{component\_i}}}{\partial x_d} + // (\mathbf{w}^k_{n+1})_{\text{component_i}}}{\partial x_d} + (1-\theta) + // \frac{\partial (\mathbf{w}_n)_{\text{component_i}}}{\partial x_d} , + // \frac{\partial (\mathbf{z}_i)_{\text{component_i}}}{\partial x_d} // \right)_K - // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component\_i}} - // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component\_i}} , - // (\mathbf{z}_i)_{\text{component\_i}} \right)_K , + // \\ &-& \left( \theta\mathbf{G}({\mathbf{w}^k_n+1} )_{\text{component_i}} + // + (1-\theta)\mathbf{G}({\mathbf{w}_n})_{\text{component_i}} , + // (\mathbf{z}_i)_{\text{component_i}} \right)_K , // @f} // where integrals are // understood to be evaluated through summation over quadrature points. diff --git a/tests/sundials/kinsol_03.cc b/tests/sundials/kinsol_03.cc index 782c21a729..43edfa0485 100644 --- a/tests/sundials/kinsol_03.cc +++ b/tests/sundials/kinsol_03.cc @@ -28,11 +28,11 @@ // the Jacobian matrix. For the current case, // // F(u) = [ cos(u1 + u2) - 1 + 2*u1 ] -// [ sin(u1 - u2) + 2*u2 ] +// [ sin(u1 - u2) + 2*u2 ] // // the Jacobian is the 2x2 matrix // -// J(u) = [ -sin(u1 + u2) + 2 -sin(u1 + u2)] +// J(u) = [ -sin(u1 + u2) + 2 -sin(u1 + u2) ] // [ cos(u1 - u2) -cos(u1 - u2) + 2] // // The addition of the +2u_i to the function F does not move the solution