From: Wolfgang Bangerth Date: Tue, 30 Oct 2007 22:48:37 +0000 (+0000) Subject: Work on a number of the comments, though the program already was in very good shape. X-Git-Tag: v8.0.0~9692 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=6fb8847222f603fe3241b99162cc2f17179018c7;p=dealii.git Work on a number of the comments, though the program already was in very good shape. git-svn-id: https://svn.dealii.org/trunk@15404 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-29/step-29.cc b/deal.II/examples/step-29/step-29.cc index c2d99cd5ef..3161cf2199 100644 --- a/deal.II/examples/step-29/step-29.cc +++ b/deal.II/examples/step-29/step-29.cc @@ -68,11 +68,12 @@ // takes: #include - // Although we'll follow good deal.ii practice and keep - // all of the code dimension independent, we will - // really only consider the 2D problem here: -#define DIM 2 - + // As the last step at the beginning of this program, + // we make everything that is in the + // deal.II namespace globally + // available, without the need to + // prefix everything with + // dealii::: using namespace dealii; @@ -80,7 +81,23 @@ using namespace dealii; // First we define a class for the function representing // the Dirichlet boundary values. This has been done many times before - // and therefore does not need much explanation. + // and therefore does not need much explanation. + // + // Since there are two values $v$ and + // $w$ that need to be prescribed at + // the boundary, we have to tell the + // base class that this is a + // vector-valued function with two + // components, and the + // vector_value function + // and its cousin + // vector_value_list must + // return vectors with two entries. In + // our case the function is very + // simple, it just returns 1 for the + // real part $v$ and 0 for the + // imaginary part $w$ regardless of + // the point where it is evaluated. template class DirichletBoundaryValues : public Function { @@ -95,11 +112,6 @@ class DirichletBoundaryValues : public Function }; - // Since there are two values $v$ and $w$ that need to be prescribed - // at the boundary, the boundary value function must return a vector - // with two entries. In our case the function is very simple, - // it just returns 1 for the real part $v$ and 0 for the imaginary - // part $w$ regardless of the point where it is evaluated. template inline void DirichletBoundaryValues::vector_value (const Point &/*p*/, @@ -125,7 +137,7 @@ void DirichletBoundaryValues::vector_value_list (const std::vectorParameterReader class} - // The next classis responsible for preparing the + // The next class is responsible for preparing the // ParameterHandler object and reading parameters from // an input file. // It includes a function declare_parameters @@ -147,42 +159,65 @@ class ParameterReader : public Subscriptor // The constructor stores a reference to // the ParameterHandler object that is passed to it: ParameterReader::ParameterReader(ParameterHandler ¶mhandler) - : - prm(paramhandler) + : + prm(paramhandler) {} // @sect4{ParameterReader::declare_parameters} - // The declare_parameters function declares all the parameters - // that our ParameterHandler object will discover in the input file, - // along with their types, range conditions and the subsections - // they appear in: + // The declare_parameters + // function declares all the + // parameters that our + // ParameterHandler object will be + // able to read from input files, + // along with their types, range + // conditions and the subsections they + // appear in. We will wrap all the + // entries that go into a section in a + // pair of braces to force the editor + // to indent them by one level, making + // it simpler to read which entries + // together form a section: void ParameterReader::declare_parameters() { - // Parameters for mesh and geometry include the number - // of global refinement steps that are applied to the initial - // coarse mesh and the focal distance $d$ of the transducer lens. For the number - // of refinement steps, we allow integer values between 1 and 10, - // and for the focal distance any number greater than zero: + // Parameters for mesh and geometry + // include the number of global + // refinement steps that are applied + // to the initial coarse mesh and the + // focal distance $d$ of the + // transducer lens. For the number of + // refinement steps, we allow integer + // values in the range $[0,\infty)$, + // where the omitted second argument + // to the Patterns::Integer object + // denotes the half-open interval. + // For the focal distance any number + // greater than zero is accepted: prm.enter_subsection ("Mesh & geometry parameters"); - + { prm.declare_entry("Number of refinements", "6", - Patterns::Integer(1,10), + Patterns::Integer(0), "Number of global mesh refinement steps " "applied to initial coarse grid"); - - prm.declare_entry("Focal distance", "0.3", - Patterns::Double(0), - "Distance of the focal point of the lens " - "to the x-axis"); - + + prm.declare_entry("Focal distance", "0.3", + Patterns::Double(0), + "Distance of the focal point of the lens " + "to the x-axis"); + } prm.leave_subsection (); - // The next subsection is devoted to the physical parameters appearing - // in the equation, which are the frequency $\omega$ - // and wave speed $c$: + // The next subsection is devoted to + // the physical parameters appearing + // in the equation, which are the + // frequency $\omega$ and wave speed + // $c$. Again, both need to lie in the + // half-open interval $[0,\infty)$ + // represented by calling the + // Patterns::Double class with only + // the left end-point as argument: prm.enter_subsection ("Physical constants"); - + { prm.declare_entry("c", "1.5e5", Patterns::Double(0), "Wave speed"); @@ -190,7 +225,7 @@ void ParameterReader::declare_parameters() prm.declare_entry("omega", "5.0e7", Patterns::Double(0), "Frequency"); - + } prm.leave_subsection (); @@ -199,7 +234,7 @@ void ParameterReader::declare_parameters() // through entries in the configuration file, which is the // purpose of the last subsection: prm.enter_subsection ("Output parameters"); - + { prm.declare_entry("Output file", "solution", Patterns::Anything(), "Name of the output file (without extension)"); @@ -215,24 +250,30 @@ void ParameterReader::declare_parameters() // DataOutInterface<1>::declare_parameters executes // declare_parameters for all available output formats, so that // for each format an own subsection will be created with parameters declared - // for that particular output format. + // for that particular output format. (The actual value of the template + // parameter in the call, @<1@> above, does not matter + // here: the function does the same work independent of the dimension, + // but happens to be in a template-parameter-dependent class.) // To find out what parameters there are for which output format, you can either // consult the documentation of the DataOutBase class, or simply run this // program without a parameter file present. It will then create a file with all // declared parameters set to their default values, which can conveniently serve // as a starting point for setting the parameters to the values you desire. DataOutInterface<1>::declare_parameters (prm); - + } prm.leave_subsection (); } // @sect4{ParameterReader::read_parameters} // This is the main function in the ParameterReader class. - // It gets called from outside and first initiates declaration of - // the parameters, and then tries to read them from the input file whose - // filename is provided by the caller. -void ParameterReader::read_parameters(const std::string parameter_file) + // It gets called from outside, first declares all + // the parameters, and then reads them from the input file whose + // filename is provided by the caller. After the call to this + // function is complete, the prm object + // can be used to retrieve the values of the parameters read + // in from the file: +void ParameterReader::read_parameters (const std::string parameter_file) { declare_parameters(); @@ -254,7 +295,7 @@ void ParameterReader::read_parameters(const std::string parameter_file) // to make use of this mechanism here. // So far we have always used the DataOut::add_data_vector function - // to add vectors contaning output data to a DataOut object. + // to add vectors containing output data to a DataOut object. // There is a special version of this function // that in addition to the data vector has an additional argument of // type DataPostprocessor. What happens when this function @@ -299,15 +340,12 @@ class ComputeIntensity : public DataPostprocessor // representing the names we assign to the individual // quantities that our postprocessor outputs. In our // case, the postprocessor has only $|u|$ as an output, so we - // need to provide just that one name: + // return a vector with a single component named "Intensity": template std::vector ComputeIntensity::get_names() const { - std::vector field_names; - field_names.push_back("Intensity"); - - return field_names; + return std::vector (1, "Intensity"); } // The next function returns a set of flags that indicate @@ -316,10 +354,11 @@ ComputeIntensity::get_names() const // This can be any subset of update_values, // update_gradients and update_hessians // (and, in the case of face data, also - // update_normal_vectors). + // update_normal_vectors), which are documented in UpdateFlags. // Of course, computation of the derivatives requires additional // resources, so only the flags for data that is really needed - // should be given here. In our case, only the function values + // should be given here, just as we do when we use FEValues objects. + // In our case, only the function values // of $v$ and $w$ are needed to compute $|u|$, so we're good // with the update_values flag. template @@ -343,9 +382,13 @@ ComputeIntensity::n_output_variables () const // The actual prostprocessing happens in the following function. - // Its inputs are a vector representing point values of the function + // Its inputs are a vector representing values of the function + // (which is here vector-valued) representing the data vector + // given to DataOut::add_data_vector, evaluated at all quadrature + // points where we generate output, // and some tensor objects representing derivatives (that we don't - // use here since $|u|$ is computed from just $v$ and $w$). + // use here since $|u|$ is computed from just $v$ and $w$, and for + // which we assign no name to the corresponding function argument). // The derived quantities are returned in the // computed_quantities vector. // Remember that this function may only use data for which the @@ -385,7 +428,8 @@ ComputeIntensity::compute_derived_quantities_vector ( // Finally here is the main class of this program. // It's member functions are very similar to the previous - // examples and the list of member variables does not contain + // examples, in particular @ref step_4 "step-4", and the list + // of member variables does not contain // any major surprises either. // The ParameterHandler object that is passed // to the constructor is stored as a reference to allow @@ -407,7 +451,7 @@ class UltrasoundProblem void solve (); void output_results () const; - ParameterHandler &prm; + ParameterHandler &prm; Triangulation triangulation; DoFHandler dof_handler; @@ -426,10 +470,10 @@ class UltrasoundProblem // of the scalar Q1 field, one for $v$ and one for $w$: template UltrasoundProblem::UltrasoundProblem (ParameterHandler& param) - : - prm(param), - dof_handler(triangulation), - fe(FE_Q(1), 2) + : + prm(param), + dof_handler(triangulation), + fe(FE_Q(1), 2) {} @@ -443,7 +487,7 @@ UltrasoundProblem::~UltrasoundProblem () // Here we setup the grid for our domain. // As mentioned in the exposition, the geometry is just a unit square - // with the part of the boundary that represents the transducer + // (in 2d) with the part of the boundary that represents the transducer // lens replaced by a sector of a circle. template void UltrasoundProblem::make_grid () @@ -461,7 +505,7 @@ void UltrasoundProblem::make_grid () prm.enter_subsection ("Mesh & geometry parameters"); const double focal_distance = prm.get_double("Focal distance"); - const unsigned int N_ref = prm.get_integer("Number of refinements"); + const unsigned int n_refinements = prm.get_integer("Number of refinements"); prm.leave_subsection (); @@ -482,13 +526,16 @@ void UltrasoundProblem::make_grid () Point (0.5, focal_distance) : Point (0.5, 0.5, focal_distance); - double radius = sqrt( (focal_point.distance(transducer) * - focal_point.distance(transducer)) + - ((dim==2) ? 0.01 : 0.02)); + const double radius = std::sqrt( (focal_point.distance(transducer) * + focal_point.distance(transducer)) + + ((dim==2) ? 0.01 : 0.02)); // As initial coarse grid we take a simple unit square with 5 subdivisions - // in each direction. Then we step through all cells to find the + // in each direction. The number of subdivisions is chosen so that + // the line segment $[0.4,0.6]$ that we want to designate as the + // transducer boundary is spanned by a single face. Then we step + // through all cells to find the // faces where the transducer is to be located, which in fact is just // the single edge from 0.4 to 0.6 on the x-axis. This is where we want // the refinements to be made according to a circle shaped boundary, @@ -506,24 +553,27 @@ void UltrasoundProblem::make_grid () cell->face(face)->set_boundary_indicator (1); - // For the circle part of the transducer lens, a hyper-ball object is used - // (which, of course, in 2D just represents a circle), - // with radius and center as computed above. Then we assign this boundary-object - // to the part of the boundary with boundary indicator 1: - const HyperBallBoundary boundary(focal_point, radius); + // For the circle part of the + // transducer lens, a hyper-ball + // object is used (which, of course, + // in 2D just represents a circle), + // with radius and center as computed + // above. By marking this object as + // static, we ensure that + // it lives until the end of the + // program and thereby longer than the + // triangulation object we will + // associated with it. We then assign + // this boundary-object to the part of + // the boundary with boundary + // indicator 1: + static const HyperBallBoundary boundary(focal_point, radius); triangulation.set_boundary(1, boundary); - // Now the global refinement is executed. Cells near the transducer + // Now global refinement is executed. Cells near the transducer // location will be automatically refined according to the // circle shaped boundary of the transducer lens: - triangulation.refine_global (N_ref); - - // The next line releases the triangulation's - // pointer to the boundary object that we just created, which - // is necessary since the boundary object will be destructed - // as we leave this function - // and we don't want the triangulation to keep a hanging pointer. - triangulation.set_boundary(1); + triangulation.refine_global (n_refinements); // Lastly, we generate some more logging output. We stop // the timer and query the number of CPU seconds @@ -604,7 +654,7 @@ void UltrasoundProblem::assemble_system () // As usual, for computing integrals ordinary Gauss quadrature // rule is used. Since our bilinear form involves boundary integrals // on $\Gamma_2$, we also need a quadrature rule for surface - // integration on the faces, which are dim-1 dimensional: + // integration on the faces, which are $dim-1$ dimensional: QGauss quadrature_formula(2); QGauss face_quadrature_formula(2); @@ -654,14 +704,15 @@ void UltrasoundProblem::assemble_system () // finite element system with two components. Due // to the way we constructed this FESystem, namely as the cartesian product of // two scalar finite element fields, each shape function - // has only a single nonzero component (they are, in deal.II lingo, primitive). + // has only a single nonzero component (they are, in deal.II lingo, + // @ref GlossPrimitive "primitive"). // Hence, each shape function can be viewed as one of the $\phi$'s or $\psi$'s // from the introduction, and similarly // the corresponding degrees of freedom can be attributed to either $\alpha$ or $\beta$. // As we iterate through all the degrees of freedom on the current cell however, // they do not come in any particular order, and so we cannot decide right away - // whether the DoFs with index i and j belong to the real or imaginary part of our solution. - // But if you look at the form of the system matrix in the introduction, this disctinction + // whether the DoFs with index $i$ and $j$ belong to the real or imaginary part of our solution. + // On the other hand, if you look at the form of the system matrix in the introduction, this distinction // is crucial since it will determine to which block in the system matrix the // contribution of the current pair of DoFs will go and hence which quantity we need to // compute from the given two shape functions. @@ -671,13 +722,13 @@ void UltrasoundProblem::assemble_system () // system the DoF belongs. The second integer of the pair indicates // which index the DoF has in the scalar base finite element field, but this information // is not relevant here. If you want to know more about this function and the underlying - // scheme behind primitive vector valued elements, take a look at step-8, + // scheme behind primitive vector valued elements, take a look at step-8 or step-22, // where these topics are explained in depth. if (fe.system_to_component_index(i).first == fe.system_to_component_index(j).first) { - // If both DoFs i and j belong to same component, i.e. their shape functions are + // If both DoFs $i$ and $j$ belong to same component, i.e. their shape functions are // both $\phi$'s or both $\psi$'s, the contribution will end up in one of the diagonal // blocks in our system matrix, and since the corresponding entries are computed // by the same formula, we do not bother if they actually are @@ -707,19 +758,18 @@ void UltrasoundProblem::assemble_system () } - // For DoFs that belong to different components of the system, i.e. one DoF - // representing a $\phi$ and the other a $\psi$, a contribution is only - // possible in the off-diagonal blocks of the system matrix. The entries - // in these blocks consist of a boundary integral on $\Gamma_2$, so we - // should first check if the current cell is on the boundary at all, since - // if it is not, its shape functions will certainly not have support on the boundary. - if (cell->at_boundary()) - - // If the current cell is at the boundary, we look through its - // faces to identify the ones that lie on $\Gamma_2$: - for (unsigned int face=0; face::faces_per_cell; ++face) - if (cell->face(face)->at_boundary() && - (cell->face(face)->boundary_indicator() == 0) ) + // We also have to add contributions + // due to boundary terms. To this end, + // we loop over all faces of the + // current cell and see if first it is + // at the boundary, and second has the + // correct boundary indicator + // associated with $\Gamma_2$, the + // part of the boundary where we have + // absorbing boundary conditions: + for (unsigned int face=0; face::faces_per_cell; ++face) + if (cell->face(face)->at_boundary() && + (cell->face(face)->boundary_indicator() == 0) ) { @@ -738,9 +788,18 @@ void UltrasoundProblem::assemble_system () fe.system_to_component_index(j).first) && fe.has_support_on_face(i, face) && fe.has_support_on_face(j, face)) - - - // These DoFs will then contribute to the boundary integrals + // The check whether shape functions + // have support on a face is not + // strictly necessary: if we don't + // check for it we would simply add up + // terms to the local cell matrix that + // happen to be zero because at least + // one of the shape functions happens + // to be zero. However, we can save + // that work by adding the checks + // above. + + // In either case, these DoFs will contribute to the boundary integrals // in the off-diagonal blocks of the system matrix. To compute the // integral, we loop over all the quadrature points on the face and // sum up the contribution weighted with the quadrature weights that @@ -750,7 +809,7 @@ void UltrasoundProblem::assemble_system () // is a $\phi$, since that will determine the sign of the entry. // We account for this by a simple conditional statement // that determines the correct sign. Since we already checked - // that DoF i and j belong to different components, so it suffices here + // that DoF $i$ and $j$ belong to different components, it suffices here // to test for one of them to which component it belongs. for (unsigned int q_point=0; q_point::assemble_system () // @sect4{UltrasoundProblem::solve} -template -void UltrasoundProblem::solve () -{ - deallog << "Solving linear system... "; - Timer timer; - timer.start (); - // As already mentioned in the introduction, the system matrix // is neither symmetric nor definite, and so it is not // quite obvious how to come up with an iterative solver @@ -825,18 +877,24 @@ void UltrasoundProblem::solve () // to have the deal.II library built with UMFPACK support, which // can be achieved by providing the --with-umfpack // switch to the configure script prior to compilation of the library. - SparseDirectUMFPACK A_direct; +template +void UltrasoundProblem::solve () +{ + deallog << "Solving linear system... "; + Timer timer; + timer.start (); - // The initialize call provides the matrix that we would like to invert + // The code to solve the linear system is short: First, we allocate an object of the right type. The following initialize call provides the matrix that we would like to invert // to the SparseDirectUMFPACK object, and at the same // time kicks off the LU-decomposition. Hence, this is also the point // where most of the computational work in this program happens. + SparseDirectUMFPACK A_direct; A_direct.initialize(system_matrix); // After the decomposition, we can use A_direct like a matrix representing // the inverse of our system matrix, so to compute the solution we just have // to multiply with the right hand side vector: - A_direct.vmult(solution,system_rhs); + A_direct.vmult (solution, system_rhs); timer.stop (); deallog << "done (" @@ -870,18 +928,17 @@ void UltrasoundProblem::output_results () const data_out.attach_dof_handler (dof_handler); - // Next we query the output-related parameters from the ParameterHandler: - prm.enter_subsection("Output parameters"); - - const std::string output_file = prm.get("Output file"), - output_format = prm.get("Output format"); - + // Next we query the output-related parameters from the ParameterHandler. // The DataOut::parse_parameters call acts as a counterpart to the // DataOutInterface<1>::declare_parameters call in // ParameterReader::declare_parameters. It collects all // the output format related parameters from the ParameterHandler // and sets the corresponding properties of the // DataOut object accordingly. + prm.enter_subsection("Output parameters"); + + const std::string output_file = prm.get("Output file"), + output_format = prm.get("Output format"); data_out.parse_parameters(prm); prm.leave_subsection (); @@ -913,7 +970,12 @@ void UltrasoundProblem::output_results () const // which effectively adds $|u|$ to the output data: data_out.add_data_vector (solution, intensities); - // The last steps are as before: + // The last steps are as before. Note + // that the actual output format is + // now determined by what is stated in + // the input file, i.e. one can change + // the output format without having to + // re-compile this program: data_out.build_patches (); data_out.write (output, format); @@ -941,26 +1003,29 @@ void UltrasoundProblem::run () // @sect4{The main function} - // Finally the main function of the program: + // Finally the main + // function of the program. It has the + // same structure as in almost all of + // the other tutorial programs. The + // only exception is that we define + // ParameterHandler and + // ParameterReader + // objects, and let the latter read in + // the parameter values from a + // textfile called + // step-29.prm. The + // values so read are then handed over + // to an instance of the + // UltrasoundProblem class: int main () { try { - // In 1D, the description of the domain - // and the boundary conditions is not very sensible, so - // exclude this case: - Assert (DIM > 1, ExcNotImplemented()); - - // Next define ParameterHandler and ParameterReader objects, - // and let the latter read in the parameter values from - // a textfile called step-29.prm: ParameterHandler prm; ParameterReader param(prm); param.read_parameters("step-29.prm"); - // Lastly, we instantiate our main class with the ParameterHandler - // object and start the computations: - UltrasoundProblem ultrasound_problem (prm); + UltrasoundProblem<2> ultrasound_problem (prm); ultrasound_problem.run (); } catch (std::exception &exc)