From: Wolfgang Bangerth Date: Thu, 9 Feb 2023 03:08:07 +0000 (-0700) Subject: Standardize 2D/3D -> 2d/3d in comments. X-Git-Tag: v9.5.0-rc1~566^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=794f860f8b5afbdc51e850de0d42491eb404d1dd;p=dealii.git Standardize 2D/3D -> 2d/3d in comments. --- diff --git a/include/deal.II/base/tensor_function_parser.h b/include/deal.II/base/tensor_function_parser.h index ea316d31b8..03b2dbff64 100644 --- a/include/deal.II/base/tensor_function_parser.h +++ b/include/deal.II/base/tensor_function_parser.h @@ -58,7 +58,7 @@ class Vector; * std::map constants; * constants["pi"] = numbers::PI; * - * // TensorFunctionParser with 2+1 variables (space + time) in 2D of rank 2. + * // TensorFunctionParser with 2+1 variables (space + time) in 2d of rank 2. * // It is necessary to tell the parser that there is an additional variable * // to be taken into account (t). * TensorFunctionParser<2,2> tfp; diff --git a/include/deal.II/distributed/p4est_wrappers.h b/include/deal.II/distributed/p4est_wrappers.h index 47dd658b96..44d3a8c1a7 100644 --- a/include/deal.II/distributed/p4est_wrappers.h +++ b/include/deal.II/distributed/p4est_wrappers.h @@ -66,7 +66,7 @@ namespace internal template struct types; - // these struct mimics p4est for 1D + // these struct mimics p4est for 1d template <> struct types<1> { diff --git a/include/deal.II/fe/mapping_q_internal.h b/include/deal.II/fe/mapping_q_internal.h index b195e0fc06..c67d52c296 100644 --- a/include/deal.II/fe/mapping_q_internal.h +++ b/include/deal.II/fe/mapping_q_internal.h @@ -395,7 +395,7 @@ namespace internal if (polynomial_degree <= 1) return output; - // fill the 1D interior weights + // fill the 1d interior weights QGaussLobatto<1> quadrature(polynomial_degree + 1); output[0].reinit(polynomial_degree - 1, GeometryInfo<1>::vertices_per_cell); diff --git a/include/deal.II/grid/connectivity.h b/include/deal.II/grid/connectivity.h index dad07743aa..36ef3bd966 100644 --- a/include/deal.II/grid/connectivity.h +++ b/include/deal.II/grid/connectivity.h @@ -1378,7 +1378,7 @@ namespace internal { Connectivity connectivity(dim, cell_t_id); - CRS temp1; // needed for 3D + CRS temp1; // needed for 3d if (dim == 1) connectivity.entity_to_entities(1, 0) = con_cv; diff --git a/include/deal.II/grid/grid_tools.h b/include/deal.II/grid/grid_tools.h index b5344d499f..b7ca5394bc 100644 --- a/include/deal.II/grid/grid_tools.h +++ b/include/deal.II/grid/grid_tools.h @@ -3673,7 +3673,7 @@ namespace GridTools // This specialization is defined here so that the general template in the - // source file doesn't need to have further 1D overloads for the internal + // source file doesn't need to have further 1d overloads for the internal // functions it calls. template <> inline Triangulation<1, 1>::DistortedCellList @@ -4133,7 +4133,7 @@ namespace GridTools { using namespace internal::ProjectToObject; // Try to use the special flat algorithm for quads (this is better - // than the general algorithm in 3D). This does not take into account + // than the general algorithm in 3d). This does not take into account // whether projected_point is outside the quad, but we optimize along // lines below anyway: const int dim = Iterator::AccessorType::dimension; @@ -4185,7 +4185,7 @@ namespace GridTools // function we can use gradient descent to minimize it. // // Of course, this is much simpler in the structdim = 1 case (we - // could rewrite the projection as a 1D optimization problem), but + // could rewrite the projection as a 1d optimization problem), but // to reduce the potential for bugs we use the same code in both // cases. const double step_size = object->diameter() / 64.0; diff --git a/include/deal.II/grid/tria_accessor.templates.h b/include/deal.II/grid/tria_accessor.templates.h index 4494fc5f8c..48570e23ed 100644 --- a/include/deal.II/grid/tria_accessor.templates.h +++ b/include/deal.II/grid/tria_accessor.templates.h @@ -985,7 +985,7 @@ namespace internal static std::array get_line_indices_of_cell(const TriaAccessor<2, dim, spacedim> &cell) { - // For 2D cells the access cell->line_orientation() is already + // For 2d cells the access cell->line_orientation() is already // efficient std::array line_indices = {}; for (unsigned int line : cell.line_indices()) @@ -1102,7 +1102,7 @@ namespace internal static std::array get_line_orientations_of_cell(const TriaAccessor<2, dim, spacedim> &cell) { - // For 2D cells the access cell->line_orientation() is already + // For 2d cells the access cell->line_orientation() is already // efficient std::array line_orientations = {}; for (unsigned int line : cell.line_indices()) @@ -1630,7 +1630,7 @@ TriaAccessor::isotropic_child( switch (structdim) { case 1: - // no anisotropic refinement in 1D + // no anisotropic refinement in 1d return child(i); case 2: diff --git a/include/deal.II/integrators/maxwell.h b/include/deal.II/integrators/maxwell.h index 4ec7ccd2e4..593c9b0f47 100644 --- a/include/deal.II/integrators/maxwell.h +++ b/include/deal.II/integrators/maxwell.h @@ -221,7 +221,7 @@ namespace LocalIntegrators const unsigned int n_dofs = fe.dofs_per_cell; const unsigned int t_dofs = fetest.dofs_per_cell; AssertDimension(fe.get_fe().n_components(), dim); - // There should be the right number of components (3 in 3D, otherwise 1) + // There should be the right number of components (3 in 3d, otherwise 1) // for the curl. AssertDimension(fetest.get_fe().n_components(), (dim == 3) ? dim : 1); AssertDimension(M.m(), t_dofs); diff --git a/include/deal.II/matrix_free/cuda_matrix_free.h b/include/deal.II/matrix_free/cuda_matrix_free.h index 9c0e50d44b..0b2780bf3d 100644 --- a/include/deal.II/matrix_free/cuda_matrix_free.h +++ b/include/deal.II/matrix_free/cuda_matrix_free.h @@ -706,8 +706,8 @@ namespace CUDAWrappers /* clang-format off */ // We are limiting the number of threads according to the // following formulas: - // - in 2D: `threads = cells * (k+1)^d <= 4*CUDAWrappers::warp_size` - // - in 3D: `threads = cells * (k+1)^d <= 2*CUDAWrappers::warp_size` + // - in 2d: `threads = cells * (k+1)^d <= 4*CUDAWrappers::warp_size` + // - in 3d: `threads = cells * (k+1)^d <= 2*CUDAWrappers::warp_size` return dim==2 ? (fe_degree==1 ? CUDAWrappers::warp_size : // 128 fe_degree==2 ? CUDAWrappers::warp_size/4 : // 72 fe_degree==3 ? CUDAWrappers::warp_size/8 : // 64 diff --git a/include/deal.II/matrix_free/evaluation_kernels.h b/include/deal.II/matrix_free/evaluation_kernels.h index a37aa58155..b5a0d33010 100644 --- a/include/deal.II/matrix_free/evaluation_kernels.h +++ b/include/deal.II/matrix_free/evaluation_kernels.h @@ -342,7 +342,7 @@ namespace internal eval0.template hessians<0, true, false>(values_dofs, hessians_quad); - // advance the next component in 1D array + // advance the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += n_q_points; @@ -391,7 +391,7 @@ namespace internal if (evaluation_flag & EvaluationFlags::values) eval1.template values<1, true, false>(temp1, values_quad); - // advance to the next component in 1D array + // advance to the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += 2 * n_q_points; @@ -481,7 +481,7 @@ namespace internal if (evaluation_flag & EvaluationFlags::values) eval2.template values<2, true, false>(temp2, values_quad); - // advance to the next component in 1D array + // advance to the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += 3 * n_q_points; @@ -611,7 +611,7 @@ namespace internal values_dofs); } - // advance to the next component in 1D array + // advance to the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += n_q_points; @@ -671,7 +671,7 @@ namespace internal eval0.template gradients<0, false, true>(temp1, values_dofs); } - // advance to the next component in 1D array + // advance to the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += 2 * n_q_points; @@ -762,7 +762,7 @@ namespace internal eval0.template values<0, false, true>(temp2, values_dofs); } - // advance to the next component in 1D array + // advance to the next component in 1d array values_dofs += dofs_per_comp; values_quad += n_q_points; gradients_quad += 3 * n_q_points; diff --git a/include/deal.II/matrix_free/evaluation_kernels_hanging_nodes.h b/include/deal.II/matrix_free/evaluation_kernels_hanging_nodes.h index 76e2626d97..30eae07d9b 100644 --- a/include/deal.II/matrix_free/evaluation_kernels_hanging_nodes.h +++ b/include/deal.II/matrix_free/evaluation_kernels_hanging_nodes.h @@ -1560,7 +1560,7 @@ namespace internal constraint_mask_sorted, v); - if (dim == 2) // 2D: only faces + if (dim == 2) // 2d: only faces { const bool subcell_x = (mask >> 0) & 1; const bool subcell_y = (mask >> 1) & 1; @@ -1603,7 +1603,7 @@ namespace internal values); // face 1 } } - else if (dim == 3) // 3D faces and edges + else if (dim == 3) // 3d faces and edges { const bool type_x = (mask >> 0) & 1; const bool type_y = (mask >> 1) & 1; diff --git a/include/deal.II/matrix_free/hanging_nodes_internal.h b/include/deal.II/matrix_free/hanging_nodes_internal.h index e852713df5..d8be02dc0f 100644 --- a/include/deal.II/matrix_free/hanging_nodes_internal.h +++ b/include/deal.II/matrix_free/hanging_nodes_internal.h @@ -103,7 +103,7 @@ namespace internal if (dim == 2) { if (edge > 0) - return false; // in 2D there are no edge constraints + return false; // in 2d there are no edge constraints if (subcell == 0 && face == 0) return true; // no constraints @@ -405,7 +405,7 @@ namespace internal const unsigned int n_raw_lines = triangulation.n_raw_lines(); this->line_to_cells.resize(n_raw_lines); - // In 3D, we can have DoFs on only an edge being constrained (e.g. in a + // In 3d, we can have DoFs on only an edge being constrained (e.g. in a // cartesian 2x2x2 grid, where only the upper left 2 cells are refined). // This sets up a helper data structure in the form of a mapping from // edges (i.e. lines) to neighboring cells. diff --git a/include/deal.II/matrix_free/mapping_info.templates.h b/include/deal.II/matrix_free/mapping_info.templates.h index 15e9c57c52..da5f72dbef 100644 --- a/include/deal.II/matrix_free/mapping_info.templates.h +++ b/include/deal.II/matrix_free/mapping_info.templates.h @@ -264,7 +264,7 @@ namespace internal // the gradient of the inverse is given by (multidimensional calculus) - // J * (J * L) * J (the third J is because we need to transform the // gradient L from the unit to the real cell, and then apply the inverse - // Jacobian). Compare this with 1D with j(x) = 1/k(phi(x)), where j = + // Jacobian). Compare this with 1d with j(x) = 1/k(phi(x)), where j = // phi' is the inverse of the jacobian and k is the derivative of the // jacobian on the unit cell. Then j' = phi' k'/k^2 = j k' j^2. template diff --git a/include/deal.II/matrix_free/shape_info.templates.h b/include/deal.II/matrix_free/shape_info.templates.h index c785fd1c72..e53e82f17c 100644 --- a/include/deal.II/matrix_free/shape_info.templates.h +++ b/include/deal.II/matrix_free/shape_info.templates.h @@ -349,7 +349,7 @@ namespace internal q_point, 0)[direction][direction]; - // evaluate basis functions on the two 1D subfaces (i.e., + // evaluate basis functions on the two 1d subfaces (i.e., // at the positions divided by one half and shifted by one // half, respectively) for hanging nodes q_point[direction] *= 0.5; @@ -371,7 +371,7 @@ namespace internal q_point, 0)[direction][direction]; } - // evaluate basis functions on the 1D faces, i.e., in zero and + // evaluate basis functions on the 1d faces, i.e., in zero and // one Point q_point = unit_point; q_point[direction] = 0; @@ -431,7 +431,7 @@ namespace internal // note: we cannot write `univariate_shape_data.quadrature = quad`, // since the quadrature rule within UnivariateShapeData expects - // a 1D quadrature rule. However, in this case we are not able to + // a 1d quadrature rule. However, in this case we are not able to // define that rule anyway so other code cannot use this information. univariate_shape_data.fe_degree = fe.degree; @@ -651,9 +651,9 @@ namespace internal scalar_lexicographic, lexicographic_numbering); - // to evaluate 1D polynomials, evaluate along the line with the first + // to evaluate 1d polynomials, evaluate along the line with the first // unit support point, assuming that fe.shape_value(0,unit_point) == - // 1. otherwise, need other entry point (e.g. generating a 1D element + // 1. otherwise, need other entry point (e.g. generating a 1d element // by reading the name, as done before r29356) if (fe.has_support_points()) unit_point = fe.get_unit_support_points()[scalar_lexicographic[0]]; @@ -703,7 +703,7 @@ namespace internal shape_hessians[i * n_q_points_1d + q] = fe.shape_grad_grad(my_i, q_point)[0][0]; - // evaluate basis functions on the two 1D subfaces (i.e., at the + // evaluate basis functions on the two 1d subfaces (i.e., at the // positions divided by one half and shifted by one half, // respectively) q_point[0] *= 0.5; @@ -722,7 +722,7 @@ namespace internal fe.shape_grad_grad(my_i, q_point)[0][0]; } - // evaluate basis functions on the 1D faces, i.e., in zero and one + // evaluate basis functions on the 1d faces, i.e., in zero and one Point q_point = unit_point; q_point[0] = 0; shape_data_on_face[0][i] = fe.shape_value(my_i, q_point); @@ -999,7 +999,7 @@ namespace internal } } - // face orientation for faces in 3D + // face orientation for faces in 3d // (similar to MappingInfoStorage::QuadratureDescriptor::initialize) if (dim == 3) { diff --git a/include/deal.II/matrix_free/tensor_product_kernels.h b/include/deal.II/matrix_free/tensor_product_kernels.h index 9aad0f5100..369471596d 100644 --- a/include/deal.II/matrix_free/tensor_product_kernels.h +++ b/include/deal.II/matrix_free/tensor_product_kernels.h @@ -535,7 +535,7 @@ namespace internal case 1: ++in; ++out; - // faces 2 and 3 in 3D use local coordinate system zx, which + // faces 2 and 3 in 3d use local coordinate system zx, which // is the other way around compared to the tensor // product. Need to take that into account. if (dim == 3) @@ -959,7 +959,7 @@ namespace internal case 1: ++in; ++out; - // faces 2 and 3 in 3D use local coordinate system zx, which + // faces 2 and 3 in 3d use local coordinate system zx, which // is the other way around compared to the tensor // product. Need to take that into account. if (dim == 3) @@ -1079,8 +1079,8 @@ namespace internal - // In this case, the 1D shape values read (sorted lexicographically, rows - // run over 1D dofs, columns over quadrature points): + // In this case, the 1d shape values read (sorted lexicographically, rows + // run over 1d dofs, columns over quadrature points): // Q2 --> [ 0.687 0 -0.087 ] // [ 0.4 1 0.4 ] // [-0.087 0 0.687 ] @@ -1267,8 +1267,8 @@ namespace internal // For the specialized loop used for the gradient computation in - // here, the 1D shape values read (sorted lexicographically, rows - // run over 1D dofs, columns over quadrature points): + // here, the 1d shape values read (sorted lexicographically, rows + // run over 1d dofs, columns over quadrature points): // Q2 --> [-2.549 -1 0.549 ] // [ 3.098 0 -3.098 ] // [-0.549 1 2.549 ] @@ -2879,7 +2879,7 @@ namespace internal case 1: ++in; ++out; - // faces 2 and 3 in 3D use local coordinate system zx, which + // faces 2 and 3 in 3d use local coordinate system zx, which // is the other way around compared to the tensor // product. Need to take that into account. if (dim == 3) @@ -3092,7 +3092,7 @@ namespace internal AssertIndexRange(n_shapes, 200); dealii::ndarray shapes; - // Evaluate 1D polynomials and their derivatives + // Evaluate 1d polynomials and their derivatives std::array point; for (unsigned int d = 0; d < dim; ++d) point[d] = p[d]; @@ -3183,7 +3183,7 @@ namespace internal AssertIndexRange(n_shapes, 200); dealii::ndarray shapes; - // Evaluate 1D polynomials and their derivatives + // Evaluate 1d polynomials and their derivatives std::array point; for (unsigned int d = 0; d < dim; ++d) point[d] = p[d]; @@ -3284,7 +3284,7 @@ namespace internal AssertIndexRange(n_shapes, 200); dealii::ndarray shapes; - // Evaluate 1D polynomials and their derivatives + // Evaluate 1d polynomials and their derivatives std::array point; for (unsigned int d = 0; d < dim; ++d) point[d] = p[d]; diff --git a/include/deal.II/meshworker/output.h b/include/deal.II/meshworker/output.h index 50d005ce5b..b2ec969c79 100644 --- a/include/deal.II/meshworker/output.h +++ b/include/deal.II/meshworker/output.h @@ -205,7 +205,7 @@ namespace MeshWorker const unsigned int patch_dim = (info.face_number == numbers::invalid_unsigned_int) ? dim : (dim - 1); const unsigned int row_length = n_points; - // If patches are 1D, end the + // If patches are 1d, end the // patch after a row, else end // it after a square const unsigned int row_length2 = diff --git a/include/deal.II/numerics/tensor_product_matrix_creator.h b/include/deal.II/numerics/tensor_product_matrix_creator.h index 184851b04f..c2d5a24a2f 100644 --- a/include/deal.II/numerics/tensor_product_matrix_creator.h +++ b/include/deal.II/numerics/tensor_product_matrix_creator.h @@ -196,7 +196,7 @@ namespace TensorProductMatrixCreator AssertIndexRange(0, n_overlap); AssertThrow(is_dg == false, ExcNotImplemented()); - // 2) loop over all dimensions and create 1D mass and stiffness + // 2) loop over all dimensions and create 1d mass and stiffness // matrices so that boundary conditions and overlap are considered const unsigned int n_dofs_1D = M_ref.n(); diff --git a/include/deal.II/numerics/vector_tools_boundary.templates.h b/include/deal.II/numerics/vector_tools_boundary.templates.h index 63df5b116d..2bb10e0fe7 100644 --- a/include/deal.II/numerics/vector_tools_boundary.templates.h +++ b/include/deal.II/numerics/vector_tools_boundary.templates.h @@ -1003,7 +1003,7 @@ namespace VectorTools std::vector & dofs_processed) { // This function computes the L2-projection of the given - // boundary function on 3D edges and returns the constraints + // boundary function on 3d edges and returns the constraints // associated with the edge functions for the given cell. // // In the context of this function, by associated DoFs we mean: @@ -1310,7 +1310,7 @@ namespace VectorTools std::vector & dofs_processed) { // This function computes the L2-projection of the boundary - // function on the interior of faces only. In 3D, this should only be + // function on the interior of faces only. In 3d, this should only be // called after first calling compute_edge_projection_l2, as it relies on // edge constraints which are found. @@ -1383,7 +1383,7 @@ namespace VectorTools { case 2: // NOTE: This is very similar to compute_edge_projection as used in - // 3D, + // 3d, // and contains a lot of overlap with that function. { // Find the DoFs we want to constrain. There are degree+1 in @@ -1449,7 +1449,7 @@ namespace VectorTools // \int_{edge} (tangential* boundary_value) * (tangential * // edge_shape_function_i) dS. // - // In 2D, tangential*vector is equivalent to + // In 2d, tangential*vector is equivalent to // cross_product_3d(normal, vector), so we use this instead. // This avoids possible issues with the computation of the // tangent. @@ -1663,7 +1663,7 @@ namespace VectorTools // Storage for the linear system. // There are 2*degree*(degree+1) DoFs associated with a face in - // 3D. Note this doesn't include the DoFs associated with edges on + // 3d. Note this doesn't include the DoFs associated with edges on // that face. FullMatrix face_matrix(2 * degree * (degree + 1)); FullMatrix face_matrix_inv(2 * degree * (degree + 1)); @@ -1801,19 +1801,19 @@ namespace VectorTools AffineConstraints & constraints, const hp::MappingCollection &mapping_collection) { - // L2-projection based interpolation formed in one (in 2D) or two (in 3D) + // L2-projection based interpolation formed in one (in 2d) or two (in 3d) // steps. // - // In 2D we only need to constrain edge DoFs. + // In 2d we only need to constrain edge DoFs. // - // In 3D we need to constrain both edge and face DoFs. This is done in two + // In 3d we need to constrain both edge and face DoFs. This is done in two // parts. // // For edges, since the face shape functions are zero here ("bubble // functions"), we project the tangential component of the boundary // function and compute the L2-projection. This returns the values for the - // DoFs associated with each edge shape function. In 3D, this is computed - // by internals::compute_edge_projection_l2, in 2D, it is handled by + // DoFs associated with each edge shape function. In 3d, this is computed + // by internals::compute_edge_projection_l2, in 2d, it is handled by // compute_face_projection_curl_conforming_l2. // // For faces we compute the residual of the boundary function which is @@ -1908,7 +1908,7 @@ namespace VectorTools } // Compute the projection of the boundary function - // on the edge. In 2D this is all that's required. + // on the edge. In 2d this is all that's required. compute_face_projection_curl_conforming_l2( cell, face, diff --git a/include/deal.II/optimization/solver_bfgs.h b/include/deal.II/optimization/solver_bfgs.h index fd8228fadc..e467cdef73 100644 --- a/include/deal.II/optimization/solver_bfgs.h +++ b/include/deal.II/optimization/solver_bfgs.h @@ -276,7 +276,7 @@ SolverBFGS::solve( Assert(a1 > 0., ExcInternalError()); f_prev = f; - // 1D line-search function + // 1d line-search function const auto line_func = [&](const Number &x_line) -> std::pair { x = x0; diff --git a/source/arborx/access_traits.cc b/source/arborx/access_traits.cc index 6236e0f67b..8e311c6372 100644 --- a/source/arborx/access_traits.cc +++ b/source/arborx/access_traits.cc @@ -160,7 +160,7 @@ namespace ArborXWrappers for (unsigned int i = 0; i < size; ++i) { // ArborX assumes that the center coordinates and the radius use float - // and the sphere is 3D + // and the sphere is 3d spheres.emplace_back(std::make_pair( dealii::Point<3, float>( static_cast(dim_spheres[i].first[0]), @@ -235,7 +235,7 @@ namespace ArborX std::size_t i) { // ArborX assumes that the point coordinates use float and that the point - // is 3D + // is 3d return {static_cast(v[i][0]), static_cast(v[i][1]), dim == 2 ? 0 : static_cast(v[i][2])}; @@ -263,7 +263,7 @@ namespace ArborX const dealii::Point min_corner = boundary_points.first; const dealii::Point max_corner = boundary_points.second; // ArborX assumes that the bounding box coordinates use float and that the - // bounding box is 3D + // bounding box is 3d return {{static_cast(min_corner[0]), static_cast(min_corner[1]), dim == 2 ? 0.f : static_cast(min_corner[2])}, @@ -294,7 +294,7 @@ namespace ArborX std::size_t i) { // ArborX assumes that the center coordinates and the radius use float and - // the sphere is 3D + // the sphere is 3d return {{static_cast(v[i].first[0]), static_cast(v[i].first[1]), dim == 2 ? 0 : static_cast(v[i].first[2])}, diff --git a/source/base/data_out_base.cc b/source/base/data_out_base.cc index 2cceadfa09..eacb91a2fa 100644 --- a/source/base/data_out_base.cc +++ b/source/base/data_out_base.cc @@ -663,7 +663,7 @@ namespace DataOutBase { unsigned int new_dim; - // HDF5/XDMF output only supports 1D or 3D output, so force rearrangement if + // HDF5/XDMF output only supports 1d or 3d output, so force rearrangement if // needed if (flags.xdmf_hdf5_output && dimension != 1) new_dim = 3; @@ -5036,7 +5036,7 @@ namespace DataOutBase #else - // Tecplot binary output only good for 2D & 3D + // Tecplot binary output only good for 2d & 3d if (dim == 1) { write_tecplot(patches, data_names, nonscalar_data_ranges, flags, out); @@ -6344,12 +6344,12 @@ namespace DataOutBase const unsigned int size = last_component - first_component + 1; if (size == 1) - // 1D, 1 element + // 1d, 1 element { vtk_data[0][0] = data_vectors(first_component, n); } else if (size == 4) - // 2D, 4 elements + // 2d, 4 elements { for (unsigned int c = 0; c < size; ++c) { @@ -6360,7 +6360,7 @@ namespace DataOutBase } } else if (size == 9) - // 3D 9 elements + // 3d 9 elements { for (unsigned int c = 0; c < size; ++c) { @@ -8819,7 +8819,7 @@ namespace for (i = 0; i < data_filter.n_data_sets(); ++i) { // Allocate space for the point data - // Must be either 1D or 3D + // Must be either 1d or 3d const unsigned int pt_data_vector_dim = data_filter.get_data_set_dim(i); vector_name = data_filter.get_data_set_name(i); @@ -10020,7 +10020,7 @@ XDMFEntry::get_xdmf_content(const unsigned int indent_level) const << attribute_dim.first << "\" AttributeType=\"" << (attribute_dim.second > 1 ? "Vector" : "Scalar") << "\" Center=\"Node\">\n"; - // Vectors must have 3 elements even for 2D models + // Vectors must have 3 elements even for 2d models ss << indent(indent_level + 2) << " 1 ? 3 : 1) << "\" NumberType=\"Float\" Precision=\"8\" Format=\"HDF\">\n"; diff --git a/source/base/function_tools.cc b/source/base/function_tools.cc index 97b10f70d1..630b382ebf 100644 --- a/source/base/function_tools.cc +++ b/source/base/function_tools.cc @@ -36,7 +36,7 @@ namespace FunctionTools const SymmetricTensor<2, dim> hessian = function.hessian(center, component); // Deviation from function value at the center, based on the - // Taylor-expansion: |f'| * dx + 1/2 * |f''| * dx^2, (in 1D). dx is half + // Taylor-expansion: |f'| * dx + 1/2 * |f''| * dx^2, (in 1d). dx is half // the side-length of the box. double taylor_bound_f = 0; @@ -47,7 +47,7 @@ namespace FunctionTools taylor_bound_f += std::abs(gradient[i]) * dx_i; // Deviation from value of df/dx_i at the center, - // |f''| * dx, (in 1D). + // |f''| * dx, (in 1d). double taylor_bound_dfdxi = 0; for (unsigned int j = 0; j < dim; ++j) diff --git a/source/base/index_set.cc b/source/base/index_set.cc index ecdad5d61f..bc68b5fefc 100644 --- a/source/base/index_set.cc +++ b/source/base/index_set.cc @@ -407,7 +407,7 @@ IndexSet::add_ranges_internal( // we add ranges in a consecutive way, so fast), otherwise, we work with // add_range(). the number 9 is chosen heuristically given the fact that // there are typically up to 8 independent ranges when adding the degrees of - // freedom on a 3D cell or 9 when adding degrees of freedom of faces. if + // freedom on a 3d cell or 9 when adding degrees of freedom of faces. if // doing cell-by-cell additions, we want to avoid repeated calls to // IndexSet::compress() which gets called upon merging two index sets, so we // want to be in the other branch then. diff --git a/source/base/polynomials_barycentric.cc b/source/base/polynomials_barycentric.cc index eb5601ccb8..51fca09d99 100644 --- a/source/base/polynomials_barycentric.cc +++ b/source/base/polynomials_barycentric.cc @@ -30,7 +30,7 @@ namespace internal get_degree( const std::vector::PolyType> &polys) { - // Since the first variable in a simplex polynomial is, e.g., in 2D, + // Since the first variable in a simplex polynomial is, e.g., in 2d, // // t0 = 1 - x - y // diff --git a/source/base/polynomials_bernardi_raugel.cc b/source/base/polynomials_bernardi_raugel.cc index 749872d049..c8da53b790 100644 --- a/source/base/polynomials_bernardi_raugel.cc +++ b/source/base/polynomials_bernardi_raugel.cc @@ -41,10 +41,10 @@ PolynomialsBernardiRaugel::create_polynomials_bubble() for (unsigned int d = 0; d < dim; ++d) pols.push_back(bubble_shapes); - // In 2D, the only q_ij polynomials we will use are 31,32,13,23 + // In 2d, the only q_ij polynomials we will use are 31,32,13,23 // where ij corresponds to index (i-1)+3*(j-1) (2,5,6,7) - // In 3D, the only q_ijk polynomials we will use are 331,332,313,323,133,233 + // In 3d, the only q_ijk polynomials we will use are 331,332,313,323,133,233 // where ijk corresponds to index (i-1)+3*(j-1)+9*(k-1) (8,17,20,23,24,25) return pols; } @@ -244,7 +244,7 @@ PolynomialsBernardiRaugel::n_polynomials(const unsigned int k) if (dim == 2 || dim == 3) return dim * GeometryInfo::vertices_per_cell + GeometryInfo::faces_per_cell; - // 2*4+4=12 polynomials in 2D and 3*8+6=30 polynomials in 3D + // 2*4+4=12 polynomials in 2d and 3*8+6=30 polynomials in 3d Assert(false, ExcNotImplemented()); return 0; diff --git a/source/base/process_grid.cc b/source/base/process_grid.cc index 00c882681d..7c340b6028 100644 --- a/source/base/process_grid.cc +++ b/source/base/process_grid.cc @@ -49,7 +49,7 @@ namespace // optimal for Cholesky factorization. LQ and RQ factorizations take // advantage of “tall” grids (Pr > Pc ) - // Below we always try to create 2D processor grids: + // Below we always try to create 2d processor grids: const int n_processes = Utilities::MPI::n_mpi_processes(mpi_comm); diff --git a/source/base/quadrature_lib.cc b/source/base/quadrature_lib.cc index 3a45349c90..0821bcccbe 100644 --- a/source/base/quadrature_lib.cc +++ b/source/base/quadrature_lib.cc @@ -1567,7 +1567,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( : QSimplex(Quadrature()) { Assert(1 <= dim && dim <= 3, ExcNotImplemented()); - // Just use Gauss in 1D: this is a high-order open rule so this is a + // Just use Gauss in 1d: this is a high-order open rule so this is a // reasonable equivalent for generic programming. if (dim == 1) { @@ -1598,7 +1598,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( b_point_permutations.push_back(all_permutations(b_point)); }; - // Apply a Barycentric permutation where two points (in 3D) are different. + // Apply a Barycentric permutation where two points (in 3d) are different. // Equivalent to s22 in quadpy. auto process_point_2 = [&](const double a, const double w) { Assert(dim == 3, ExcInternalError()); @@ -1634,13 +1634,13 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 2: if (use_odd_order) { - // WV-1, 2D + // WV-1, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(1.0000000000000000e+00); } else { - // WV-2, 2D + // WV-2, 2d process_point_1(1.6666666666666669e-01, 3.3333333333333331e-01); } @@ -1648,13 +1648,13 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 3: if (use_odd_order) { - // WV-1, 3D + // WV-1, 3d b_point_permutations.push_back({centroid}); b_weights.push_back(1.0000000000000000e+00); } else { - // WV-2, 3D + // WV-2, 3d process_point_1(1.3819660112501050e-01, 2.5000000000000000e-01); } @@ -1667,14 +1667,14 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( switch (dim) { case 2: - // WV-4 in both cases (no WV-3 in 2D) + // WV-4 in both cases (no WV-3 in 2d) process_point_1(9.1576213509770743e-02, 1.0995174365532187e-01); process_point_1(4.4594849091596489e-01, 2.2338158967801147e-01); break; case 3: if (use_odd_order) { - // WV-3, 3D + // WV-3, 3d process_point_1(3.2816330251638171e-01, 1.3621784253708741e-01); process_point_1(1.0804724989842859e-01, @@ -1682,7 +1682,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-5 (no WV-4 in 3D) + // WV-5 (no WV-4 in 3d) Quadrature::operator=(QWitherdenVincentSimplex(3)); } break; @@ -1696,7 +1696,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 2: if (use_odd_order) { - // WV-5, 2D + // WV-5, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(2.2500000000000001e-01); process_point_1(1.0128650732345634e-01, @@ -1706,7 +1706,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-6, 2D + // WV-6, 2d process_point_1(6.3089014491502227e-02, 5.0844906370206819e-02); process_point_1(2.4928674517091043e-01, @@ -1719,7 +1719,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 3: if (use_odd_order) { - // WV-5, 3D + // WV-5, 3d process_point_1(3.1088591926330061e-01, 1.1268792571801590e-01); process_point_1(9.2735250310891248e-02, @@ -1729,7 +1729,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-6, 3D + // WV-6, 3d process_point_1(4.0673958534611372e-02, 1.0077211055320640e-02); process_point_1(3.2233789014227548e-01, @@ -1751,7 +1751,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 2: if (use_odd_order) { - // WV-7, 2D + // WV-7, 2d process_point_1(3.3730648554587850e-02, 1.6545050110792131e-02); process_point_1(4.7430969250471822e-01, @@ -1764,7 +1764,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-8, 2D + // WV-8, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(1.4431560767778717e-01); process_point_1(5.0547228317030957e-02, @@ -1781,7 +1781,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 3: if (use_odd_order) { - // WV-7, 3D + // WV-7, 3d b_point_permutations.push_back({centroid}); b_weights.push_back(9.5485289464130846e-02); process_point_1(3.1570114977820279e-01, @@ -1797,7 +1797,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-8, 3D + // WV-8, 3d process_point_1(1.0795272496221089e-01, 2.6426650908408830e-02); process_point_1(1.8510948778258660e-01, @@ -1826,7 +1826,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 2: if (use_odd_order) { - // WV-9, 2D + // WV-9, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(9.7135796282798836e-02); process_point_1(4.4729513394452691e-02, @@ -1843,7 +1843,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-10, 2D + // WV-10, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(8.1743329146285973e-02); process_point_1(3.2055373216943517e-02, @@ -1864,7 +1864,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( case 3: if (use_odd_order) { - // WV-9, 3D + // WV-9, 3d b_point_permutations.push_back({centroid}); b_weights.push_back(5.8010548912480253e-02); process_point_1(6.1981697552226933e-10, @@ -1889,7 +1889,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-10, 3D + // WV-10, 3d b_point_permutations.push_back({centroid}); b_weights.push_back(4.7399773556020743e-02); process_point_1(3.1225006869518868e-01, @@ -1921,11 +1921,11 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } break; case 6: - // There is no WV-11 rule in 3D yet + // There is no WV-11 rule in 3d yet Assert(dim == 2, ExcNotImplemented()); if (use_odd_order) { - // WV-11, 2D + // WV-11, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(8.5761179732224219e-02); process_point_1(2.8485417614371900e-02, 1.0431870512894697e-02); @@ -1942,7 +1942,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-12, 2D + // WV-12, 2d process_point_1(2.4646363436335583e-02, 7.9316425099736389e-03); process_point_1(4.8820375094554153e-01, 2.4266838081452032e-02); process_point_1(1.0925782765935427e-01, 2.8486052068877544e-02); @@ -1960,11 +1960,11 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } break; case 7: - // There is no WV-13 rule in 3D yet + // There is no WV-13 rule in 3d yet Assert(dim == 2, ExcNotImplemented()); if (use_odd_order) { - // WV-13, 2D + // WV-13, 2d b_point_permutations.push_back({centroid}); b_weights.push_back(6.7960036586831640e-02); process_point_1(2.1509681108843159e-02, 6.0523371035391717e-03); @@ -1986,7 +1986,7 @@ QWitherdenVincentSimplex::QWitherdenVincentSimplex( } else { - // WV-14, 2D + // WV-14, 2d process_point_1(1.9390961248701044e-02, 4.9234036024000819e-03); process_point_1(6.1799883090872587e-02, 1.4433699669776668e-02); process_point_1(4.8896391036217862e-01, 2.1883581369428889e-02); diff --git a/source/base/tensor_product_polynomials.cc b/source/base/tensor_product_polynomials.cc index 1aa78fd6d1..f908a36d6f 100644 --- a/source/base/tensor_product_polynomials.cc +++ b/source/base/tensor_product_polynomials.cc @@ -347,7 +347,7 @@ TensorProductPolynomials::evaluate( if (update_4th_derivatives) n_values_and_derivatives = 5; - // Compute the values (and derivatives, if necessary) of all 1D polynomials + // Compute the values (and derivatives, if necessary) of all 1d polynomials // at this evaluation point. We need to compute dim*n_polynomials // evaluations, involving an evaluation of each polynomial for each // coordinate direction. Once we have those values, we perform the diff --git a/source/base/utilities.cc b/source/base/utilities.cc index 223be92258..2894b79ecd 100644 --- a/source/base/utilities.cc +++ b/source/base/utilities.cc @@ -273,7 +273,7 @@ namespace Utilities // (Zoltan_HSFC_InvHilbertXd) // https://github.com/aditi137/Hilbert/blob/master/Hilbert/hilbert.cpp - // now we can map to 1D coordinate stored in Transpose format + // now we can map to 1d coordinate stored in Transpose format // adopt AxestoTranspose function from the paper, that // transforms in-place between geometrical axes and Hilbert transpose. // Example: b=5 bits for each of n=3 coordinates. diff --git a/source/cgal/intersections.cc b/source/cgal/intersections.cc index d6470cbc1f..ae393e730d 100644 --- a/source/cgal/intersections.cc +++ b/source/cgal/intersections.cc @@ -221,7 +221,7 @@ namespace CGALWrappers // Collection of utilities that compute intersection between simplices // identified by array of points. The return type is the one of // CGAL::intersection(), i.e. a std_cxx17::optional>. - // Intersection between 2D and 3D objects and 1D/3D objects are available + // Intersection between 2d and 3d objects and 1d/3d objects are available // only with CGAL versions greater or equal than 5.5, hence the // corresponding functions are guarded by #ifdef directives. All the // signatures follow the convection that the first entity has an intrinsic diff --git a/source/distributed/tria.cc b/source/distributed/tria.cc index d06cbdcd63..fec6ed0f1b 100644 --- a/source/distributed/tria.cc +++ b/source/distributed/tria.cc @@ -2540,7 +2540,7 @@ namespace parallel // periodicity, e.g. when finding the maximum cell level around a // vertex. // - // Example: On a 3D cell with vertices numbered from 0 to 7 and + // Example: On a 3d cell with vertices numbered from 0 to 7 and // periodic boundary conditions in x direction, the vector // topological_vertex_numbering will contain the numbers // {0,0,2,2,4,4,6,6} (because the vertex pairs {0,1}, {2,3}, {4,5}, diff --git a/source/dofs/dof_handler_policy.cc b/source/dofs/dof_handler_policy.cc index 52979d0170..341e69923b 100644 --- a/source/dofs/dof_handler_policy.cc +++ b/source/dofs/dof_handler_policy.cc @@ -624,7 +624,7 @@ namespace internal // mentioned above) // TODO: The check for 'dim==2' was inserted by intuition. It // fixes - // the previous problems with step-27 in 3D. But an + // the previous problems with step-27 in 3d. But an // explanation for this is still required, and what we do here // is not what we describe in the paper!. if ((unique_sets_of_dofs == 2) && (dim == 2)) @@ -1376,7 +1376,7 @@ namespace internal // mentioned above) // TODO: The check for 'dim==2' was inserted by intuition. It // fixes - // the previous problems with step-27 in 3D. But an + // the previous problems with step-27 in 3d. But an // explanation for this is still required, and what we do here // is not what we describe in the paper!. if ((unique_sets_of_dofs == 2) && (dim == 2)) diff --git a/source/dofs/dof_renumbering.cc b/source/dofs/dof_renumbering.cc index c80b473594..e3c3484755 100644 --- a/source/dofs/dof_renumbering.cc +++ b/source/dofs/dof_renumbering.cc @@ -2741,7 +2741,7 @@ namespace DoFRenumbering { const auto &r = dofs_on_objects[a]; if (a == 10 || a == 16) - // switch order x-z for y faces in 3D to lexicographic + // switch order x-z for y faces in 3d to lexicographic // layout for (unsigned int i1 = 0; i1 < nn; ++i1) for (unsigned int i0 = 0; i0 < nn; ++i0) diff --git a/source/dofs/dof_tools.cc b/source/dofs/dof_tools.cc index dd307b18bd..6b5713d870 100644 --- a/source/dofs/dof_tools.cc +++ b/source/dofs/dof_tools.cc @@ -1144,7 +1144,7 @@ namespace DoFTools // now add the DoF on the adjacent ghost cells to the IndexSet - // Note: For certain meshes (in particular in 3D and with many + // Note: For certain meshes (in particular in 3d and with many // processors), it is really necessary to cache intermediate data. After // trying several objects such as std::set, a vector that is always kept // sorted, and a vector that is initially unsorted and sorted once at the @@ -1196,7 +1196,7 @@ namespace DoFTools // add the DoF on the adjacent ghost cells to the IndexSet - // Note: For certain meshes (in particular in 3D and with many + // Note: For certain meshes (in particular in 3d and with many // processors), it is really necessary to cache intermediate data. After // trying several objects such as std::set, a vector that is always kept // sorted, and a vector that is initially unsorted and sorted once at the diff --git a/source/dofs/dof_tools_constraints.cc b/source/dofs/dof_tools_constraints.cc index 7f73278f1d..378f1e1ac3 100644 --- a/source/dofs/dof_tools_constraints.cc +++ b/source/dofs/dof_tools_constraints.cc @@ -2518,7 +2518,7 @@ namespace DoFTools Assert(!face_1->has_children(), ExcInternalError()); // Important note: - // In 3D we have to take care of the fact that face_rotation gives + // In 3d we have to take care of the fact that face_rotation gives // the relative rotation of face_1 to face_2, i.e. we have to invert // the rotation when constraining face_2 to face_1. Therefore // face_flip has to be toggled if face_rotation is true: In case of diff --git a/source/dofs/dof_tools_sparsity.cc b/source/dofs/dof_tools_sparsity.cc index df1f909bee..3646021f75 100644 --- a/source/dofs/dof_tools_sparsity.cc +++ b/source/dofs/dof_tools_sparsity.cc @@ -894,12 +894,12 @@ namespace DoFTools cell->neighbor_face_no(face_n); - // In 1D, go straight to the cell behind this + // In 1d, go straight to the cell behind this // particular cell's most terminal cell. This makes us // skip the if (neighbor->has_children()) section // below. We need to do this since we otherwise // iterate over the children of the face, which are - // always 0 in 1D. + // always 0 in 1d. if (dim == 1) while (neighbor->has_children()) neighbor = neighbor->child(face_n == 0 ? 1 : 0); @@ -1229,12 +1229,12 @@ namespace DoFTools neighbor->is_locally_owned()) continue; // (the neighbor is finer) - // In 1D, go straight to the cell behind this + // In 1d, go straight to the cell behind this // particular cell's most terminal cell. This makes us // skip the if (neighbor->has_children()) section // below. We need to do this since we otherwise // iterate over the children of the face, which are - // always 0 in 1D. + // always 0 in 1d. if (dim == 1) while (neighbor->has_children()) neighbor = neighbor->child(face == 0 ? 1 : 0); diff --git a/source/fe/fe.cc b/source/fe/fe.cc index 43a902996d..e19f0e90da 100644 --- a/source/fe/fe.cc +++ b/source/fe/fe.cc @@ -659,7 +659,7 @@ FiniteElement::adjust_quad_dof_index_for_face_orientation( const bool face_flip, const bool face_rotation) const { - // general template for 1D and 2D: not + // general template for 1d and 2d: not // implemented. in fact, the function // shouldn't even be called unless we are // in 3d, so throw an internal error @@ -697,10 +697,10 @@ FiniteElement::adjust_line_dof_index_for_line_orientation( const unsigned int index, const bool line_orientation) const { - // general template for 1D and 2D: do + // general template for 1d and 2d: do // nothing. Do not throw an Assertion, // however, in order to allow to call this - // function in 2D as well + // function in 2d as well if (dim < 3) return index; diff --git a/source/fe/fe_abf.cc b/source/fe/fe_abf.cc index e4f80156bf..2a33a32501 100644 --- a/source/fe/fe_abf.cc +++ b/source/fe/fe_abf.cc @@ -122,7 +122,7 @@ template void FE_ABF::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; @@ -300,7 +300,7 @@ FE_ABF::initialize_support_points(const unsigned int deg) // Additional functionality for the ABF elements // TODO: Here the canonical extension of the principle // behind the ABF elements is implemented. It is unclear, - // if this really leads to the ABF spaces in 3D! + // if this really leads to the ABF spaces in 3d! interior_weights_abf.reinit(TableIndices<3>(cell_quadrature.size(), polynomials_abf[0]->n() * dim, dim)); @@ -622,7 +622,7 @@ FE_ABF::convert_generalized_support_point_values_to_dof_values( for (unsigned int fp = 0; fp < n_face_points; ++fp) { // TODO: Check what the face_orientation, face_flip and face_rotation - // have to be in 3D + // have to be in 3d unsigned int k = QProjector::DataSetDescriptor::face( this->reference_cell(), face, false, false, false, n_face_points); for (unsigned int i = 0; i < boundary_weights_abf.size(1); ++i) diff --git a/source/fe/fe_bdm.cc b/source/fe/fe_bdm.cc index 5173e03254..e8e4c8d248 100644 --- a/source/fe/fe_bdm.cc +++ b/source/fe/fe_bdm.cc @@ -114,7 +114,7 @@ template void FE_BDM::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; @@ -176,7 +176,7 @@ FE_BDM::convert_generalized_support_point_values_to_dof_values( unsigned int pbase = 0; for (auto f : GeometryInfo::face_indices()) { - // Old version with no moments in 2D. See comment below in + // Old version with no moments in 2d. See comment below in // initialize_support_points() if (test_values_face.size() == 0) { @@ -359,7 +359,7 @@ FE_BDM::initialize_support_points(const unsigned int deg) // cell. First on the faces, we have to test polynomials of degree // up to deg, which means we need dg+1 points in each direction. The // fact that we do not have tensor product polynomials will be - // considered later. In 2D, we can use point values. + // considered later. In 2d, we can use point values. QGauss face_points(deg + 1); // TODO: the implementation makes the assumption that all faces have the @@ -399,7 +399,7 @@ FE_BDM::initialize_support_points(const unsigned int deg) this->n_dofs_per_face(face_no))); // Currently, for backward compatibility, we do not use moments, but - // point values on faces in 2D. In 3D, this is impossible, since the + // point values on faces in 2d. In 3d, this is impossible, since the // moments are only taken with respect to PolynomialsP. if (dim > 2) internal::FE_BDM::initialize_test_values(test_values_face, diff --git a/source/fe/fe_bernardi_raugel.cc b/source/fe/fe_bernardi_raugel.cc index 6d3da61195..3e5948bcc4 100644 --- a/source/fe/fe_bernardi_raugel.cc +++ b/source/fe/fe_bernardi_raugel.cc @@ -89,7 +89,7 @@ template void FE_BernardiRaugel::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; @@ -154,7 +154,7 @@ FE_BernardiRaugel::get_dpo_vector() // compute the number of unknowns per cell interior/face/edge // // there are dim degrees of freedom per vertex and there - // is 1 degree of freedom per edge in 2D (face in 3D) + // is 1 degree of freedom per edge in 2d (face in 3d) std::vector dpo(dim + 1, 0u); dpo[0] = dim; dpo[dim - 1] = 1u; diff --git a/source/fe/fe_bernstein.cc b/source/fe/fe_bernstein.cc index aeec6aa96c..5fcd169ef2 100644 --- a/source/fe/fe_bernstein.cc +++ b/source/fe/fe_bernstein.cc @@ -151,7 +151,7 @@ FE_Bernstein::get_subface_interpolation_matrix( // support points. // TODO: Verify that all faces are the same with respect to // these support points. Furthermore, check if something has to - // be done for the face orientation flag in 3D. + // be done for the face orientation flag in 3d. const Quadrature subface_quadrature = subface == numbers::invalid_unsigned_int ? QProjector::project_to_face(this->reference_cell(), diff --git a/source/fe/fe_nedelec.cc b/source/fe/fe_nedelec.cc index 42d94aaa83..d4989246c2 100644 --- a/source/fe/fe_nedelec.cc +++ b/source/fe/fe_nedelec.cc @@ -216,7 +216,7 @@ template void FE_Nedelec::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; diff --git a/source/fe/fe_nedelec_sz.cc b/source/fe/fe_nedelec_sz.cc index 17c9f98fba..6bce573368 100644 --- a/source/fe/fe_nedelec_sz.cc +++ b/source/fe/fe_nedelec_sz.cc @@ -331,8 +331,8 @@ FE_NedelecSZ::get_data( // For a given cell we have: // n_line_dofs = dofs_per_line*lines_per_cell. // n_face_dofs = dofs_per_face*faces_per_cell. - // n_cell_dofs = dofs_per_quad (2D) - // = dofs_per_hex (3D) + // n_cell_dofs = dofs_per_quad (2d) + // = dofs_per_hex (3d) // // i.e. For the local dof numbering: // the first line dof is 0, @@ -353,7 +353,7 @@ FE_NedelecSZ::get_data( // This is simple enough as there is only 1 lowest order and // degree higher orders DoFs per line. // - // On a 2D cell, we have 3 types: Type 1/2/3: + // On a 2d cell, we have 3 types: Type 1/2/3: // - The ordering done by type: // - Type 1: 0 <= i1,j1 < degree. degree^2 in total. // Numbered: ij1 = i1 + j1*(degree). i.e. cell_dof_index @@ -678,7 +678,7 @@ FE_NedelecSZ::get_data( // sigma_imj_sign[i][j]. // // Note that not every i,j combination is a valid edge (there are only - // 12 valid edges in 3D), but we compute them all as it simplifies + // 12 valid edges in 3d), but we compute them all as it simplifies // things. // store the sign of each component x, y, z in the sigma list. @@ -1477,7 +1477,7 @@ FE_NedelecSZ::fill_edge_values( // This function handles the cell-dependent construction of the EDGE-based // shape functions. // - // Note it will handle both 2D and 3D, in 2D, the edges are faces, but we + // Note it will handle both 2d and 3d, in 2d, the edges are faces, but we // handle them here. // // It will fill in the missing parts of fe_data which were not possible to @@ -2029,7 +2029,7 @@ FE_NedelecSZ::fill_face_values( // This function handles the cell-dependent construction of the FACE-based // shape functions. // - // Note that it should only be called in 3D. + // Note that it should only be called in 3d. Assert(dim == 3, ExcDimensionMismatch(dim, 3)); // // It will fill in the missing parts of fe_data which were not possible to @@ -2795,7 +2795,7 @@ FE_NedelecSZ::fill_fe_face_values( AssertDimension(quadrature.size(), 1); // Note for future improvement: - // We don't have the full quadrature - should use QProjector to create the 2D + // We don't have the full quadrature - should use QProjector to create the 2d // quadrature. // // For now I am effectively generating all of the shape function vals/grads, @@ -3056,7 +3056,7 @@ FE_NedelecSZ::get_dpo_vector(const unsigned int degree) // where the objects inside the vector refer to: // 0 = vertex // 1 = edge - // 2 = face (which is a cell in 2D) + // 2 = face (which is a cell in 2d) // 3 = cell std::vector dpo; diff --git a/source/fe/fe_poly_tensor.cc b/source/fe/fe_poly_tensor.cc index 343efc6226..62bb78a6e0 100644 --- a/source/fe/fe_poly_tensor.cc +++ b/source/fe/fe_poly_tensor.cc @@ -47,13 +47,13 @@ namespace internal const std::vector &, std::vector &) { - // Nothing to do in 1D. + // Nothing to do in 1d. } // TODO: This function is not a consistent fix of the orientation issue - // like in 3D. It is rather kept not to break legacy behavior in 2D but + // like in 3d. It is rather kept not to break legacy behavior in 2d but // should be replaced. See also the implementation of // FE_RaviartThomas::initialize_quad_dof_index_permutation_and_sign_change() // or other H(div) conforming elements such as FE_ABF and @@ -118,7 +118,7 @@ namespace internal const std::vector & /*mapping_kind*/, std::vector & /*face_sign*/) { - // Nothing to do. In 3D we take care of it through the + // Nothing to do. In 3d we take care of it through the // adjust_quad_dof_sign_for_face_orientation_table } @@ -243,7 +243,7 @@ FE_PolyTensor::adjust_quad_dof_sign_for_face_orientation( const bool face_flip, const bool face_rotation) const { - // do nothing in 1D and 2D + // do nothing in 1d and 2d if (dim < 3) return false; @@ -469,9 +469,9 @@ FE_PolyTensor::fill_fe_values( this->mapping_kind, fe_data.dof_sign_change); - // TODO: This, similarly to the Nedelec case, is just a legacy function in 2D - // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1D. - // Also nothing in 3D since we take care of it by using the + // TODO: This, similarly to the Nedelec case, is just a legacy function in 2d + // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1d. + // Also nothing in 3d since we take care of it by using the // adjust_quad_dof_sign_for_face_orientation_table. internal::FE_PolyTensor::get_dof_sign_change_h_div(cell, *this, @@ -1098,9 +1098,9 @@ FE_PolyTensor::fill_fe_face_values( this->mapping_kind, fe_data.dof_sign_change); - // TODO: This, similarly to the Nedelec case, is just a legacy function in 2D - // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1D. - // Also nothing in 3D since we take care of it by using the + // TODO: This, similarly to the Nedelec case, is just a legacy function in 2d + // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1d. + // Also nothing in 3d since we take care of it by using the // adjust_quad_dof_sign_for_face_orientation_table. internal::FE_PolyTensor::get_dof_sign_change_h_div(cell, *this, @@ -1783,9 +1783,9 @@ FE_PolyTensor::fill_fe_subface_values( this->mapping_kind, fe_data.dof_sign_change); - // TODO: This, similarly to the Nedelec case, is just a legacy function in 2D - // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1D. - // Also nothing in 3D since we take care of it by using the + // TODO: This, similarly to the Nedelec case, is just a legacy function in 2d + // and affects only face_dofs of H(div) conformal FEs. It does nothing in 1d. + // Also nothing in 3d since we take care of it by using the // adjust_quad_dof_sign_for_face_orientation_table. internal::FE_PolyTensor::get_dof_sign_change_h_div(cell, *this, diff --git a/source/fe/fe_q_base.cc b/source/fe/fe_q_base.cc index 4744bc38fb..72bcbc411a 100644 --- a/source/fe/fe_q_base.cc +++ b/source/fe/fe_q_base.cc @@ -366,7 +366,7 @@ struct FE_Q_Base::Implementation // difference could be attributed to FP errors, as it was in the // range of 1.0e-16. These errors originate in the loss of // symmetry in the FP approximation of the shape-functions. - // Considering a 3rd order shape function in 1D, we have + // Considering a 3rd order shape function in 1d, we have // N0(x)=N3(1-x) and N1(x)=N2(1-x). For higher order polynomials // the FP approximations of the shape functions do not satisfy // these equations any more! Thus in the following code @@ -668,7 +668,7 @@ FE_Q_Base::get_subface_interpolation_matrix( // support points. // TODO: Verify that all faces are the same with respect to // these support points. Furthermore, check if something has to - // be done for the face orientation flag in 3D. + // be done for the face orientation flag in 3d. const Quadrature subface_quadrature = subface == numbers::invalid_unsigned_int ? QProjector::project_to_face(this->reference_cell(), @@ -988,7 +988,7 @@ FE_Q_Base::initialize_unit_face_support_points( this->unit_face_support_points[face_no].resize( Utilities::fixed_power(q_degree + 1)); - // In 1D, there is only one 0-dimensional support point, so there is nothing + // In 1d, there is only one 0-dimensional support point, so there is nothing // more to be done. if (dim == 1) return; @@ -1018,7 +1018,7 @@ template void FE_Q_Base::initialize_quad_dof_index_permutation() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; @@ -1303,7 +1303,7 @@ FE_Q_Base::get_prolongation_matrix( #endif // to efficiently evaluate the polynomial at the subcell, make use of - // the tensor product structure of this element and only evaluate 1D + // the tensor product structure of this element and only evaluate 1d // information from the polynomial. This makes the cost of this function // almost negligible also for high order elements const unsigned int dofs1d = q_degree + 1; @@ -1371,7 +1371,7 @@ FE_Q_Base::get_prolongation_matrix( } } - // now expand from 1D info. block innermost dimension (x_0) in order to + // now expand from 1d info. block innermost dimension (x_0) in order to // avoid difficult checks at innermost loop unsigned int j_indices[dim]; internal::FE_Q_Base::zero_indices(j_indices); @@ -1510,7 +1510,7 @@ FE_Q_Base::get_restriction_matrix( // same logic as in initialize_embedding to evaluate the // polynomial faster than from the tensor product: since we // evaluate all polynomials, it is much faster to just compute - // the 1D values for all polynomials before and then get the + // the 1d values for all polynomials before and then get the // dim-data. for (unsigned int j = 0; j < dofs1d; ++j) for (unsigned int d = 0; d < dim; ++d) diff --git a/source/fe/fe_raviart_thomas.cc b/source/fe/fe_raviart_thomas.cc index 1978e07a06..feec5a9f7a 100644 --- a/source/fe/fe_raviart_thomas.cc +++ b/source/fe/fe_raviart_thomas.cc @@ -255,10 +255,10 @@ template void FE_RaviartThomas::initialize_quad_dof_index_permutation_and_sign_change() { - // For 1D do nothing. + // For 1d do nothing. // - // TODO: For 2D we simply keep the legacy behavior for now. This should be - // changed in the future and can be taken care of by similar means as the 3D + // TODO: For 2d we simply keep the legacy behavior for now. This should be + // changed in the future and can be taken care of by similar means as the 3d // case below. The legacy behavior can be found in fe_poly_tensor.cc in the // function internal::FE_PolyTensor::get_dof_sign_change_h_div(...) if (dim < 3) @@ -275,7 +275,7 @@ FE_RaviartThomas::initialize_quad_dof_index_permutation_and_sign_change() this->n_dofs_per_quad(face_no), ExcInternalError()); - // The 3D RaviartThomas space has tensor_degree*tensor_degree face dofs + // The 3d RaviartThomas space has tensor_degree*tensor_degree face dofs const unsigned int n = this->tensor_degree(); Assert(n * n == this->n_dofs_per_quad(face_no), ExcInternalError()); diff --git a/source/fe/fe_raviart_thomas_nodal.cc b/source/fe/fe_raviart_thomas_nodal.cc index 65a533929f..f84d3a3d3d 100644 --- a/source/fe/fe_raviart_thomas_nodal.cc +++ b/source/fe/fe_raviart_thomas_nodal.cc @@ -42,7 +42,7 @@ namespace // vector refer to: // 0 = vertex // 1 = edge - // 2 = face (which is a cell in 2D) + // 2 = face (which is a cell in 2d) // 3 = cell std::vector get_rt_dpo_vector(const unsigned int dim, const unsigned int degree) @@ -157,7 +157,7 @@ void FE_RaviartThomasNodal< dim>::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; diff --git a/source/fe/fe_rt_bubbles.cc b/source/fe/fe_rt_bubbles.cc index 0e6ab22bd5..85d4ca9ca2 100644 --- a/source/fe/fe_rt_bubbles.cc +++ b/source/fe/fe_rt_bubbles.cc @@ -117,7 +117,7 @@ template void FE_RT_Bubbles::initialize_quad_dof_index_permutation_and_sign_change() { - // for 1D and 2D, do nothing + // for 1d and 2d, do nothing if (dim < 3) return; diff --git a/source/fe/fe_simplex_p.cc b/source/fe/fe_simplex_p.cc index 9d2d7480c1..a630082024 100644 --- a/source/fe/fe_simplex_p.cc +++ b/source/fe/fe_simplex_p.cc @@ -131,7 +131,7 @@ namespace if (conformity == FiniteElementData::Conformity::L2) return {}; - // this concept doesn't exist in 1D so just return an empty vector + // this concept doesn't exist in 1d so just return an empty vector if (dim == 1) return {}; diff --git a/source/fe/fe_simplex_p_bubbles.cc b/source/fe/fe_simplex_p_bubbles.cc index d52d4ed11e..c0e4340dd6 100644 --- a/source/fe/fe_simplex_p_bubbles.cc +++ b/source/fe/fe_simplex_p_bubbles.cc @@ -150,11 +150,11 @@ namespace FE_P_BubblesImplementation { const auto fe_p = BarycentricPolynomials::get_fe_p_basis(degree); - // no further work is needed in 1D + // no further work is needed in 1d if (dim == 1) return fe_p; - // in 2D and 3D we add a centroid bubble function + // in 2d and 3d we add a centroid bubble function auto c_bubble = BarycentricPolynomial() + 1; for (const auto &vertex : reference_cell.vertex_indices()) c_bubble = c_bubble * M(vertex); diff --git a/source/fe/fe_trace.cc b/source/fe/fe_trace.cc index 584465e413..7e671def2c 100644 --- a/source/fe/fe_trace.cc +++ b/source/fe/fe_trace.cc @@ -107,8 +107,8 @@ FE_TraceQ::has_support_on_face( AssertIndexRange(face_index, GeometryInfo::faces_per_cell); // FE_TraceQ shares the numbering of elemental degrees of freedom with FE_Q - // except for the missing interior ones (quad dofs in 2D and hex dofs in - // 3D). Therefore, it is safe to ask fe_q for the corresponding + // except for the missing interior ones (quad dofs in 2d and hex dofs in + // 3d). Therefore, it is safe to ask fe_q for the corresponding // information. The assertion 'shape_index < this->n_dofs_per_cell()' will // make sure that we only access the trace dofs. return fe_q.has_support_on_face(shape_index, face_index); @@ -153,8 +153,8 @@ std::vector FE_TraceQ::get_dpo_vector(const unsigned int deg) { // This constructs FE_TraceQ in exactly the same way as FE_Q except for the - // interior degrees of freedom that are not present here (line in 1D, quad - // in 2D, hex in 3D). + // interior degrees of freedom that are not present here (line in 1d, quad + // in 2d, hex in 3d). AssertThrow(deg > 0, ExcMessage("FE_TraceQ needs to be of degree > 0.")); std::vector dpo(dim + 1, 1U); dpo[dim] = 0; diff --git a/source/fe/mapping_fe.cc b/source/fe/mapping_fe.cc index ea13c2349a..b5ff1b602c 100644 --- a/source/fe/mapping_fe.cc +++ b/source/fe/mapping_fe.cc @@ -1229,8 +1229,8 @@ MappingFE::fill_fe_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( diff --git a/source/fe/mapping_fe_field.cc b/source/fe/mapping_fe_field.cc index 49beaf6afc..6be44923ec 100644 --- a/source/fe/mapping_fe_field.cc +++ b/source/fe/mapping_fe_field.cc @@ -1546,8 +1546,8 @@ MappingFEField::fill_fe_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( cell->diameter() / std::sqrt(double(dim))), @@ -1826,8 +1826,8 @@ MappingFEField::fill_fe_immersed_surface_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( cell->diameter() / std::sqrt(double(dim))), diff --git a/source/fe/mapping_manifold.cc b/source/fe/mapping_manifold.cc index c94e8f2cf9..a0667d0649 100644 --- a/source/fe/mapping_manifold.cc +++ b/source/fe/mapping_manifold.cc @@ -514,8 +514,8 @@ MappingManifold::fill_fe_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( cell->diameter() / std::sqrt(double(dim))), diff --git a/source/fe/mapping_q.cc b/source/fe/mapping_q.cc index bfb4089a7a..8b3db4ca05 100644 --- a/source/fe/mapping_q.cc +++ b/source/fe/mapping_q.cc @@ -156,7 +156,7 @@ MappingQ::InternalData::initialize( if (tensor_product_quadrature) { - // use a 1D FE_DGQ and adjust the hierarchic -> lexicographic + // use a 1d FE_DGQ and adjust the hierarchic -> lexicographic // numbering manually (building an FE_Q is relatively // expensive due to constraints) const FE_DGQ<1> fe(polynomial_degree); @@ -639,16 +639,16 @@ MappingQ::transform_real_to_unit_cell( ((dim == 1) || ((dim == 2) && (dim == spacedim)))) { // The dimension-dependent algorithms are much faster (about 25-45x in - // 2D) but fail most of the time when the given point (p) is not in the + // 2d) but fail most of the time when the given point (p) is not in the // cell. The dimension-independent Newton algorithm given below is // slower, but more robust (though it still sometimes fails). Therefore // this function implements the following strategy based on the // p's dimension: // - // * In 1D this mapping is linear, so the mapping is always invertible + // * In 1d this mapping is linear, so the mapping is always invertible // (and the exact formula is known) as long as the cell has non-zero // length. - // * In 2D the exact (quadratic) formula is called first. If either the + // * In 2d the exact (quadratic) formula is called first. If either the // exact formula does not succeed (negative discriminant in the // quadratic formula) or succeeds but finds a solution outside of the // unit cell, then the Newton solver is called. The rationale for the @@ -657,7 +657,7 @@ MappingQ::transform_real_to_unit_cell( // Newton solver (if it converges) will only return one answer. // Otherwise the exact formula successfully found a point in the unit // cell and that value is returned. - // * In 3D there is no (known to the authors) exact formula, so the Newton + // * In 3d there is no (known to the authors) exact formula, so the Newton // algorithm is used. const auto vertices_ = this->get_vertices(cell); @@ -1067,8 +1067,8 @@ MappingQ::fill_fe_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( @@ -1349,8 +1349,8 @@ MappingQ::fill_fe_immersed_surface_values( // check for distorted cells. - // TODO: this allows for anisotropies of up to 1e6 in 3D and - // 1e12 in 2D. might want to find a finer + // TODO: this allows for anisotropies of up to 1e6 in 3d and + // 1e12 in 2d. might want to find a finer // (dimension-independent) criterion Assert(det > 1e-12 * Utilities::fixed_power( cell->diameter() / std::sqrt(double(dim))), diff --git a/source/grid/grid_generator.cc b/source/grid/grid_generator.cc index ee8359a4b0..a2e9ef4a87 100644 --- a/source/grid/grid_generator.cc +++ b/source/grid/grid_generator.cc @@ -337,14 +337,14 @@ namespace GridGenerator // in block 4. end_b0_x_u = end_b0_x_l for symmetric airfoils const double end_b0_x_l; - // x-coordinate of first airfoil point in airfoil_1D[0] and - // airfoil_1D[1] + // x-coordinate of first airfoil point in airfoil_1d[0] and + // airfoil_1d[1] const double nose_x; - // x-coordinate of last airfoil point in airfoil_1D[0] and airfoil_1D[1] + // x-coordinate of last airfoil point in airfoil_1d[0] and airfoil_1d[1] const double tail_x; - // y-coordinate of last airfoil point in airfoil_1D[0] and airfoil_1D[1] + // y-coordinate of last airfoil point in airfoil_1d[0] and airfoil_1d[1] const double tail_y; // x-coordinate of C,D,E,F indicating ending of blocks 1 and 4 or @@ -1650,7 +1650,7 @@ namespace GridGenerator } if (dim > 2) { - // In 3D, we have some more edges to deal with + // In 3d, we have some more edges to deal with for (unsigned int i = 1; i < dim; ++i) points.push_back(0.5 * (points[i - 1] + points[i + 1])); // And we need face midpoints @@ -2171,7 +2171,7 @@ namespace GridGenerator Assert(false, ExcNotImplemented()); } - // Implementation for 2D only + // Implementation for 2d only template <> void parallelogram(Triangulation<2> &tria, @@ -2654,7 +2654,7 @@ namespace GridGenerator "The distance between corner points must be positive.")) // actual code is external since - // 1-D is different from 2/3D. + // 1-D is different from 2/3d. colorize_subdivided_hyper_rectangle(tria, p1, p2, epsilon); } } @@ -2876,7 +2876,7 @@ namespace GridGenerator const double epsilon = 0.01 * min_size; // actual code is external since - // 1-D is different from 2/3D. + // 1-D is different from 2/3d. colorize_subdivided_hyper_rectangle(tria, p1, p2, epsilon); } } @@ -3297,7 +3297,7 @@ namespace GridGenerator namespace internal { - // helper function to check if point is in 2D box + // helper function to check if point is in 2d box bool inline point_in_2d_box(const Point<2> &p, const Point<2> &c, const double radius) @@ -3540,7 +3540,7 @@ namespace GridGenerator n_slices, colorize); - // extrude to 3D + // extrude to 3d extrude_triangulation(tria_2, n_slices, L, tria, true); // shift in Z direction to match specified center @@ -3802,7 +3802,7 @@ namespace GridGenerator tria_2, shell_region_width, n_shells, skewness, colorize); extrude_triangulation(tria_2, 5, 0.41, tria, true); - // set up the new 3D manifolds + // set up the new 3d manifolds const types::manifold_id cylindrical_manifold_id = 0; const types::manifold_id tfi_manifold_id = 1; const PolarManifold<2> *const m_ptr = @@ -4091,7 +4091,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void hyper_cube_slit(Triangulation<2> &tria, @@ -4177,7 +4177,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void hyper_L(Triangulation<2> &tria, @@ -4297,7 +4297,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void hyper_ball(Triangulation<2> &tria, @@ -4466,7 +4466,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void cylinder(Triangulation<2> &tria, @@ -4510,7 +4510,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void cylinder_shell(Triangulation<2> &, @@ -4654,7 +4654,7 @@ namespace GridGenerator - // Implementation for 2D only + // Implementation for 2d only template <> void half_hyper_shell(Triangulation<2> & tria, @@ -4823,7 +4823,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void hyper_cube_slit(Triangulation<3> &tria, @@ -4872,7 +4872,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void enclosed_hyper_cube(Triangulation<3> &tria, @@ -4979,7 +4979,7 @@ namespace GridGenerator } - // Implementation for 3D only + // Implementation for 3d only template <> void hyper_L(Triangulation<3> &tria, @@ -5050,7 +5050,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void hyper_ball(Triangulation<3> &tria, @@ -5492,7 +5492,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void subdivided_cylinder(Triangulation<3> & tria, @@ -5623,7 +5623,7 @@ namespace GridGenerator tria.set_manifold(0, CylindricalManifold<3>()); } - // Implementation for 3D only + // Implementation for 3d only template <> void cylinder(Triangulation<3> &tria, @@ -5731,7 +5731,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void half_hyper_ball(Triangulation<3> &tria, @@ -6211,7 +6211,7 @@ namespace GridGenerator - // Implementation for 3D only + // Implementation for 3d only template <> void half_hyper_shell(Triangulation<3> &tria, @@ -6312,7 +6312,7 @@ namespace GridGenerator } - // Implementation for 3D only + // Implementation for 3d only template <> void quarter_hyper_shell(Triangulation<3> & tria, @@ -6381,7 +6381,7 @@ namespace GridGenerator } - // Implementation for 3D only + // Implementation for 3d only template <> void cylinder_shell(Triangulation<3> & tria, @@ -8194,13 +8194,13 @@ namespace GridGenerator const auto mid = cell.face(f)->manifold_id(); // process boundary-faces: set boundary and manifold ids - if (dim == 2) // 2D boundary-faces + if (dim == 2) // 2d boundary-faces { for (const auto &face_vertices : vertex_ids_for_boundary_faces_2d[f]) add_cell(1, face_vertices, bid, mid); } - else if (dim == 3) // 3D boundary-faces + else if (dim == 3) // 3d boundary-faces { // set manifold ids of tet-boundary-faces according to // hex-boundary-faces diff --git a/source/grid/grid_generator_pipe_junction.cc b/source/grid/grid_generator_pipe_junction.cc index 314ee06a1e..630e6505e5 100644 --- a/source/grid/grid_generator_pipe_junction.cc +++ b/source/grid/grid_generator_pipe_junction.cc @@ -374,7 +374,7 @@ namespace GridGenerator ExcMessage("Invalid input.")); } - // Create a hyperball domain in 2D that will act as the reference cross + // Create a hyperball domain in 2d that will act as the reference cross // section for each pipe segment. Triangulation tria_base; GridGenerator::hyper_ball_balanced(tria_base, diff --git a/source/grid/grid_in.cc b/source/grid/grid_in.cc index 10aba0dfae..4a8f7ba8f5 100644 --- a/source/grid/grid_in.cc +++ b/source/grid/grid_in.cc @@ -1424,7 +1424,7 @@ GridIn::read_xda(std::istream &in) in >> vertex[d]; for (unsigned int d = spacedim; d < 3; ++d) { - // file is always in 3D + // file is always in 3d double dummy; in >> dummy; } @@ -4386,8 +4386,8 @@ namespace // of which we're not particularly interested in except // whether they represent quads or hexahedrals. // *ELEMENT, TYPE=S4R, ELSET=EB - // *ELEMENT, TYPE=C3D8R, ELSET=EB - // *ELEMENT, TYPE=C3D8 + // *ELEMENT, TYPE=C3d8R, ELSET=EB + // *ELEMENT, TYPE=C3d8 // Elements itself (n=4 or n=8): // Index, i[0], ..., i[n] diff --git a/source/grid/grid_out.cc b/source/grid/grid_out.cc index 5e2fa51a30..7b7dfa518d 100644 --- a/source/grid/grid_out.cc +++ b/source/grid/grid_out.cc @@ -4670,7 +4670,7 @@ namespace internal { using LineList = std::list; - // We should never get here in 1D since this function is overloaded for + // We should never get here in 1d since this function is overloaded for // all dim == 1 cases. Assert(dim == 2 || dim == 3, ExcInternalError()); diff --git a/source/grid/grid_tools.cc b/source/grid/grid_tools.cc index f5d400f7b3..e1894d5c36 100644 --- a/source/grid/grid_tools.cc +++ b/source/grid/grid_tools.cc @@ -405,7 +405,7 @@ namespace GridTools - // Generic functions for appending face data in 2D or 3D. TODO: we can + // Generic functions for appending face data in 2d or 3d. TODO: we can // remove these once we have 'if constexpr'. namespace internal { @@ -550,7 +550,7 @@ namespace GridTools internal::FaceDataHelper face_data; std::set, internal::CellDataComparator<1>> - line_data; // only used in 3D + line_data; // only used in 3d for (const auto &cell : tria.cell_iterators_on_level(0)) { @@ -930,12 +930,12 @@ namespace GridTools { if (dim == 2) { - // flip the cell across the y = x line in 2D + // flip the cell across the y = x line in 2d std::swap(cell.vertices[1], cell.vertices[2]); } else if (dim == 3) { - // swap the front and back faces in 3D + // swap the front and back faces in 3d std::swap(cell.vertices[0], cell.vertices[2]); std::swap(cell.vertices[1], cell.vertices[3]); std::swap(cell.vertices[4], cell.vertices[6]); @@ -2053,7 +2053,7 @@ namespace GridTools }; - // Transformation to rotate around one of the cartesian z-axis in 2D. + // Transformation to rotate around one of the cartesian z-axis in 2d. class Rotate2d { public: @@ -4356,7 +4356,7 @@ namespace GridTools namespace { // Split get_subdomain_association() for p::d::T since we want to compile - // it in 1D but none of the p4est stuff is available in 1D. + // it in 1d but none of the p4est stuff is available in 1d. template void get_subdomain_association( diff --git a/source/grid/grid_tools_dof_handlers.cc b/source/grid/grid_tools_dof_handlers.cc index 0378fc4646..25b422a3c2 100644 --- a/source/grid/grid_tools_dof_handlers.cc +++ b/source/grid/grid_tools_dof_handlers.cc @@ -665,7 +665,7 @@ namespace GridTools cells_to_add.push_back(cell); } } - // point on line in 3D: We cannot simply take the intersection between + // point on line in 3d: We cannot simply take the intersection between // the two vertices of cells because of hanging nodes. So instead we // list the vertices around both points and then select the // appropriate cells according to the result of read_to_unit_cell @@ -2343,7 +2343,7 @@ namespace GridTools static inline std::bitset<3> lookup(const MATCH_T &) { - // The 1D case is trivial + // The 1d case is trivial return 1; // [true ,false,false] } }; @@ -2356,7 +2356,7 @@ namespace GridTools static inline std::bitset<3> lookup(const MATCH_T &matching) { - // In 2D matching faces (=lines) results in two cases: Either + // In 2d matching faces (=lines) results in two cases: Either // they are aligned or flipped. We store this "line_flip" // property somewhat sloppy as "face_flip" // (always: face_orientation = true, face_rotation = false) @@ -2383,7 +2383,7 @@ namespace GridTools static inline std::bitset<3> lookup(const MATCH_T &matching) { - // The full fledged 3D case. *Yay* + // The full fledged 3d case. *Yay* // See the documentation in include/deal.II/base/geometry_info.h // as well as the actual implementation in source/grid/tria.cc // for more details... diff --git a/source/grid/manifold_lib.cc b/source/grid/manifold_lib.cc index fa1c04174f..9f4c859e73 100644 --- a/source/grid/manifold_lib.cc +++ b/source/grid/manifold_lib.cc @@ -683,7 +683,7 @@ SphericalManifold::get_new_points( continue; } - // If not in 3D, just use the implementation from PolarManifold + // If not in 3d, just use the implementation from PolarManifold // after we verified that the candidate is not the center. if (spacedim < 3) new_points[row] = polar_manifold.get_new_point( @@ -1724,7 +1724,7 @@ TransfiniteInterpolationManifold::initialize( namespace { - // version for 1D + // version for 1d template Point compute_transfinite_interpolation(const AccessorType &cell, @@ -1735,7 +1735,7 @@ namespace cell.vertex(1) * chart_point[0]; } - // version for 2D + // version for 2d template Point compute_transfinite_interpolation(const AccessorType &cell, @@ -1773,7 +1773,7 @@ namespace // contribution of the vertices. If a line employs the same manifold // as the cell, we can merge the weights of the line with the weights // of the vertex with a negative sign while going through the faces - // (this is a bit artificial in 2D but it becomes clear in 3D where we + // (this is a bit artificial in 2d but it becomes clear in 3d where we // avoid looking at the faces' orientation and other complications). // add the contribution from the lines around the cell (first line in @@ -1850,7 +1850,7 @@ namespace {0, 1, 2, 3}, {4, 5, 6, 7}}; - // version for 3D + // version for 3d template Point compute_transfinite_interpolation(const AccessorType &cell, @@ -1862,7 +1862,7 @@ namespace const types::manifold_id my_manifold_id = cell.manifold_id(); const Triangulation &tria = cell.get_triangulation(); - // Same approach as in 2D, but adding the faces, subtracting the edges, and + // Same approach as in 2d, but adding the faces, subtracting the edges, and // adding the vertices const std::array, 8> vertices{{cell.vertex(0), cell.vertex(1), @@ -2132,7 +2132,7 @@ TransfiniteInterpolationManifold::pull_back( // method usually does not need more than 5-8 iterations, but sometimes // we might have had a bad initial guess and then we can accelerate // convergence considerably with getting the actual Jacobian rather than - // using secant-like methods (one gradient calculation in 3D costs as + // using secant-like methods (one gradient calculation in 3d costs as // much as 3 more iterations). this usually happens close to convergence // and one more step with the finite-differenced Jacobian leads to // convergence @@ -2345,7 +2345,7 @@ TransfiniteInterpolationManifold::compute_chart_points( // Function that can guess the location of a chart point by assuming that // the eight surrounding points are points on a two-dimensional object - // (either a cell in 2D or the face of a hexahedron in 3D), arranged like + // (either a cell in 2d or the face of a hexahedron in 3d), arranged like // // 2 - 7 - 3 // | | @@ -2438,7 +2438,7 @@ TransfiniteInterpolationManifold::compute_chart_points( use_structdim_2_guesses = true; else if (spacedim == 3) // otherwise these vectors are roughly orthogonal: enable the - // structdim 3 optimization if we are in 3D + // structdim 3 optimization if we are in 3d use_structdim_3_guesses = true; } // we should enable at most one of the optimizations diff --git a/source/grid/tria.cc b/source/grid/tria.cc index 90d1c18c76..7be57b3728 100644 --- a/source/grid/tria.cc +++ b/source/grid/tria.cc @@ -2377,7 +2377,7 @@ namespace internal const auto &crs = connectivity.entity_to_entities(dim, dim - 1); const auto &nei = connectivity.entity_to_entities(dim, dim); - // in 2D optional: since in in pure QUAD meshes same line + // in 2d optional: since in in pure QUAD meshes same line // orientations can be guaranteed bool orientation_needed = false; if (dim == 3) @@ -2466,14 +2466,14 @@ namespace internal if (dim != 3) continue; - // ... and the lines of quads in 3D + // ... and the lines of quads in 3d const auto &crs = connectivity.entity_to_entities(2, 1); for (unsigned int i = crs.ptr[face]; i < crs.ptr[face + 1]; ++i) tria.faces->lines.boundary_or_material_id[crs.col[i]] .boundary_id = 0; } } - else // 1D + else // 1d { static const unsigned int t_tba = static_cast(-1); static const unsigned int t_inner = static_cast(-2); @@ -4418,7 +4418,7 @@ namespace internal subcells[i]->set_subdomain_id(subdomainid); // TODO: here we assume that all children have the same reference - // cell type as the parent! This is justified for 2D. + // cell type as the parent! This is justified for 2d. triangulation.levels[subcells[i]->level()] ->reference_cell[subcells[i]->index()] = cell->reference_cell(); diff --git a/source/grid/tria_accessor.cc b/source/grid/tria_accessor.cc index 91ba878b63..5ffe8de7d4 100644 --- a/source/grid/tria_accessor.cc +++ b/source/grid/tria_accessor.cc @@ -151,7 +151,7 @@ namespace // the evaluation of the formulae // is a bit tricky when done dimension // independently, so we write this function - // for 2D and 3D separately + // for 2d and 3d separately /* Get the computation of the barycenter by this little Maple script. We use the bilinear mapping of the unit quad to the real quad. However, diff --git a/source/lac/scalapack.cc b/source/lac/scalapack.cc index b9e8e85274..afc65d2e67 100644 --- a/source/lac/scalapack.cc +++ b/source/lac/scalapack.cc @@ -666,8 +666,8 @@ template void ScaLAPACKMatrix::copy_to(FullMatrix &matrix) const { - // FIXME: use PDGEMR2D for copying? - // PDGEMR2D copies a submatrix of A on a submatrix of B. + // FIXME: use PDGEMR2d for copying? + // PDGEMR2d copies a submatrix of A on a submatrix of B. // A and B can have different distributions // see http://icl.cs.utk.edu/lapack-forum/viewtopic.php?t=50 Assert(n_rows == int(matrix.m()), ExcDimensionMismatch(n_rows, matrix.m())); diff --git a/source/multigrid/mg_tools.cc b/source/multigrid/mg_tools.cc index 4fe1d3a533..3c8ebf1ee7 100644 --- a/source/multigrid/mg_tools.cc +++ b/source/multigrid/mg_tools.cc @@ -51,7 +51,7 @@ DEAL_II_NAMESPACE_OPEN namespace MGTools { - // specializations for 1D + // specializations for 1d template <> void compute_row_length_vector(const DoFHandler<1, 1> &, @@ -101,7 +101,7 @@ namespace MGTools - // Template for 2D and 3D. For 1D see specialization above + // Template for 2d and 3d. For 1d see specialization above template void compute_row_length_vector(const DoFHandler &dofs, @@ -185,7 +185,7 @@ namespace MGTools while (i < fe.get_first_quad_index(face_no)) row_lengths[cell_indices[i++]] += increment; - // Now quads in 2D and 3D + // Now quads in 2d and 3d increment = (dim > 2) ? fe.n_dofs_per_cell() - (dim - 2) * fe.n_dofs_per_face(face_no) : @@ -193,7 +193,7 @@ namespace MGTools GeometryInfo::faces_per_cell * fe.n_dofs_per_face(face_no); while (i < fe.get_first_hex_index()) row_lengths[cell_indices[i++]] += increment; - // Finally, cells in 3D + // Finally, cells in 3d increment = fe.n_dofs_per_cell() - GeometryInfo::faces_per_cell * fe.n_dofs_per_face(face_no); while (i < fe.n_dofs_per_cell()) @@ -286,7 +286,7 @@ namespace MGTools } - // This is the template for 2D and 3D. See version for 1D above + // This is the template for 2d and 3d. See version for 1d above template void compute_row_length_vector(const DoFHandler & dofs, @@ -417,7 +417,7 @@ namespace MGTools ++i; } - // Now quads in 2D and 3D + // Now quads in 2d and 3d while (i < fe.get_first_hex_index()) { for (unsigned int base = 0; base < fe.n_base_elements(); ++base) @@ -437,7 +437,7 @@ namespace MGTools ++i; } - // Finally, cells in 3D + // Finally, cells in 3d while (i < fe.n_dofs_per_cell()) { for (unsigned int base = 0; base < fe.n_base_elements(); ++base) diff --git a/source/multigrid/mg_transfer_internal.cc b/source/multigrid/mg_transfer_internal.cc index fe4e35562a..4a4339de14 100644 --- a/source/multigrid/mg_transfer_internal.cc +++ b/source/multigrid/mg_transfer_internal.cc @@ -566,7 +566,7 @@ namespace internal elem_info.element_is_continuous = fe.n_dofs_per_vertex() > 0; Assert(fe.n_dofs_per_vertex() < 2, ExcNotImplemented()); - // step 1.2: get renumbering of 1D basis functions to lexicographic + // step 1.2: get renumbering of 1d basis functions to lexicographic // numbers. The distinction according to fe.n_dofs_per_vertex() is to // support both continuous and discontinuous bases. std::vector renumbering(fe.n_dofs_per_cell()); @@ -581,7 +581,7 @@ namespace internal fe.n_dofs_per_vertex(); } - // step 1.3: create a dummy 1D quadrature formula to extract the + // step 1.3: create a dummy 1d quadrature formula to extract the // lexicographic numbering for the elements Assert(fe.n_dofs_per_vertex() == 0 || fe.n_dofs_per_vertex() == 1, ExcNotImplemented()); @@ -644,8 +644,8 @@ namespace internal const dealii::Triangulation &tria = dof_handler.get_triangulation(); - // ---------------------------- 1. Extract 1D info about the finite - // element step 1.1: create a 1D copy of the finite element from FETools + // ---------------------------- 1. Extract 1d info about the finite + // element step 1.1: create a 1d copy of the finite element from FETools // where we substitute the template argument AssertDimension(dof_handler.get_fe().n_base_elements(), 1); std::string fe_name = dof_handler.get_fe().base_element(0).get_name(); diff --git a/source/non_matching/fe_values.cc b/source/non_matching/fe_values.cc index c2eb26d67b..5c8afb299b 100644 --- a/source/non_matching/fe_values.cc +++ b/source/non_matching/fe_values.cc @@ -63,7 +63,7 @@ namespace NonMatching level_set, additional_data) { - // Tensor products of each quadrature in q_collection_1D. Used on the + // Tensor products of each quadrature in q_collection_1d. Used on the // non-intersected cells. hp::QCollection q_collection; for (unsigned int i = 0; i < q_collection_1D.size(); ++i) @@ -289,7 +289,7 @@ namespace NonMatching level_set, additional_data) { - // Tensor products of each quadrature in q_collection_1D. Used on the + // Tensor products of each quadrature in q_collection_1d. Used on the // non-intersected cells. hp::QCollection q_collection; for (unsigned int i = 0; i < q_collection_1D.size(); ++i) diff --git a/source/non_matching/quadrature_generator.cc b/source/non_matching/quadrature_generator.cc index f2167bcc00..df0f805b0e 100644 --- a/source/non_matching/quadrature_generator.cc +++ b/source/non_matching/quadrature_generator.cc @@ -969,7 +969,7 @@ namespace NonMatching std::sort(side_lengths.begin(), side_lengths.end()); // Check if the two largest side lengths have the same length. This - // function isn't called in 1D, so the (dim - 2)-element exists. + // function isn't called in 1d, so the (dim - 2)-element exists. if (boost::math::epsilon_difference(side_lengths[dim - 1].first, side_lengths[dim - 2].first) < 100) return std_cxx17::optional(); @@ -1239,7 +1239,7 @@ namespace NonMatching for (const double root : roots) { - // A surface integral in 1D is just a point evaluation, + // A surface integral in 1d is just a point evaluation, // so the weight is always 1. const double weight = 1; const Point<1> point(root); @@ -1813,7 +1813,7 @@ namespace NonMatching { AssertIndexRange(face_index, GeometryInfo<1>::faces_per_cell); - // The only vertex the 1D-face has. + // The only vertex the 1d-face has. const Point<1> vertex = box.vertex(GeometryInfo<1>::face_to_cell_vertices(face_index, 0)); diff --git a/source/numerics/data_out_rotation.cc b/source/numerics/data_out_rotation.cc index 39ff77f24e..70ab0a4851 100644 --- a/source/numerics/data_out_rotation.cc +++ b/source/numerics/data_out_rotation.cc @@ -46,7 +46,7 @@ DEAL_II_NAMESPACE_OPEN // don't iterate over all cells and if cell data is requested. in that // case, we need to calculate cell_number as in the DataOut class -// Not implemented for 3D +// Not implemented for 3d namespace internal diff --git a/source/numerics/time_dependent.cc b/source/numerics/time_dependent.cc index 4726c3f6e8..cb29544b6c 100644 --- a/source/numerics/time_dependent.cc +++ b/source/numerics/time_dependent.cc @@ -871,7 +871,7 @@ TimeStepBase_Tria::refine_grid(const RefinementData refinement_data) // steps for the previous grid // // use a double value since for each - // four cells (in 2D) that we flagged + // four cells (in 2d) that we flagged // for coarsening we result in one // new. but since we loop over flagged // cells, we have to subtract 3/4 of diff --git a/source/numerics/vector_tools_rhs.cc b/source/numerics/vector_tools_rhs.cc index 5021a6b8e6..8535c27e94 100644 --- a/source/numerics/vector_tools_rhs.cc +++ b/source/numerics/vector_tools_rhs.cc @@ -21,7 +21,7 @@ DEAL_II_NAMESPACE_OPEN namespace VectorTools { - // separate implementation for 1D because otherwise we get linker errors since + // separate implementation for 1d because otherwise we get linker errors since // (hp::)FEFaceValues<1> is not compiled template <> void