From: Martin Kronbichler Date: Fri, 1 Dec 2017 08:41:59 +0000 (+0100) Subject: Fix singularity (FPE) in MappingQ1::real_to_unit_cell. X-Git-Tag: v9.0.0-rc1~702^2~2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=7b5dea9016bb41b0dac0c394e305714ab3f7a761;p=dealii.git Fix singularity (FPE) in MappingQ1::real_to_unit_cell. --- diff --git a/source/fe/mapping_q_generic.cc b/source/fe/mapping_q_generic.cc index 678348928d..1534005c44 100644 --- a/source/fe/mapping_q_generic.cc +++ b/source/fe/mapping_q_generic.cc @@ -95,8 +95,8 @@ namespace internal const Point &p) { Assert(spacedim == 2, ExcInternalError()); - const long double x = p(0); - const long double y = p(1); + const double x = p(0); + const double y = p(1); const double x0 = vertices[0](0); const double x1 = vertices[1](0); @@ -108,21 +108,23 @@ namespace internal const double y2 = vertices[2](1); const double y3 = vertices[3](1); - const long double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); - const long double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 - - (x - x1)*y2 + (x - x0)*y3; - const long double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; + const double a = (x1 - x3)*(y0 - y2) - (x0 - x2)*(y1 - y3); + const double b = -(x0 - x1 - x2 + x3)*y + (x - 2*x1 + x3)*y0 - (x - 2*x0 + x2)*y1 + - (x - x1)*y2 + (x - x0)*y3; + const double c = (x0 - x1)*y - (x - x1)*y0 + (x - x0)*y1; - const long double discriminant = b*b - 4*a*c; + const double discriminant = b*b - 4*a*c; // exit if the point is not in the cell (this is the only case where the // discriminant is negative) AssertThrow (discriminant > 0.0, (typename Mapping::ExcTransformationFailed())); - long double eta1; - long double eta2; - // special case #1: if a is zero, then use the linear formula - if (a == 0.0 && b != 0.0) + double eta1; + double eta2; + const double sqrt_discriminant = std::sqrt(discriminant); + // special case #1: if a is near-zero to make the discriminant exactly + // equal b, then use the linear formula + if (b != 0.0 && std::abs(b) == sqrt_discriminant) { eta1 = -c/b; eta2 = -c/b; @@ -133,41 +135,41 @@ namespace internal { // if both a and c are very small then the root should be near // zero: this first case will capture that - eta1 = 2*c / (-b - std::sqrt(discriminant)); - eta2 = 2*c / (-b + std::sqrt(discriminant)); + eta1 = 2*c / (-b - sqrt_discriminant); + eta2 = 2*c / (-b + sqrt_discriminant); } // finally, use the plain version: else { - eta1 = (-b - std::sqrt(discriminant)) / (2*a); - eta2 = (-b + std::sqrt(discriminant)) / (2*a); + eta1 = (-b - sqrt_discriminant) / (2*a); + eta2 = (-b + sqrt_discriminant) / (2*a); } // pick the one closer to the center of the cell. - const long double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; + const double eta = (std::abs(eta1 - 0.5) < std::abs(eta2 - 0.5)) ? eta1 : eta2; /* * There are two ways to compute xi from eta, but either one may have a * zero denominator. */ - const long double subexpr0 = -eta*x2 + x0*(eta - 1); - const long double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; + const double subexpr0 = -eta*x2 + x0*(eta - 1); + const double xi_denominator0 = eta*x3 - x1*(eta - 1) + subexpr0; const double max_x = std::max(std::max(std::abs(x0), std::abs(x1)), std::max(std::abs(x2), std::abs(x3))); if (std::abs(xi_denominator0) > 1e-10*max_x) { - const long double xi = (x + subexpr0)/xi_denominator0; + const double xi = (x + subexpr0)/xi_denominator0; return Point<2>(xi, eta); } else { const double max_y = std::max(std::max(std::abs(y0), std::abs(y1)), std::max(std::abs(y2), std::abs(y3))); - const long double subexpr1 = -eta*y2 + y0*(eta - 1); - const long double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; + const double subexpr1 = -eta*y2 + y0*(eta - 1); + const double xi_denominator1 = eta*y3 - y1*(eta - 1) + subexpr1; if (std::abs(xi_denominator1) > 1e-10*max_y) { - const long double xi = (subexpr1 + y)/xi_denominator1; + const double xi = (subexpr1 + y)/xi_denominator1; return Point<2>(xi, eta); } else // give up and try Newton iteration