From: bonito Date: Wed, 5 Jan 2011 21:11:49 +0000 (+0000) Subject: git-svn-id: https://svn.dealii.org/trunk@23133 0785d39b-7218-0410-832d-ea1e28bc413d X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=7fadb40557e1cbc9ddc38d2f1ad9d11223410955;p=dealii-svn.git git-svn-id: https://svn.dealii.org/trunk@23133 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-38/doc/intro.dox b/deal.II/examples/step-38/doc/intro.dox index 3c6970c3f7..de71fcf546 100644 --- a/deal.II/examples/step-38/doc/intro.dox +++ b/deal.II/examples/step-38/doc/intro.dox @@ -192,7 +192,7 @@ solution. Since the solution function and its numerical approximation are only defined on the manifold, the obvious definition of this error functional is $| e |_{H^1} = | \nabla_\Gamma e |_{L_2} - = \left( \int_\Omega | \left[\mathbf 1 - \mathbf n \otimes \mathbf + = \left( \int_\Gamma | \left[\mathbf 1 - \mathbf n \otimes \mathbf n\right]\nabla (u-u_h) |^2 \right)^{1/2}$. This requires us to provide the tangential gradient $\left[\mathbf 1 - \mathbf n \otimes \mathbf n\right]\nabla u$ to the function VectorTools::integrate_difference