From: Martin Kronbichler Date: Wed, 7 Aug 2013 13:13:39 +0000 (+0000) Subject: Implement adaptivity. For this, need to add a few functions to FE_FaceQ like face... X-Git-Tag: v8.1.0~1126 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=80f73897d26c6a5725bafad35a051e7e5415b0b2;p=dealii.git Implement adaptivity. For this, need to add a few functions to FE_FaceQ like face interpolation matrices. Also, change the support points of FE_FaceQ to Gauss-Lobatto points instead of equidistant ones as listed in a todo. git-svn-id: https://svn.dealii.org/trunk@30246 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-51/step-51.cc b/deal.II/examples/step-51/step-51.cc index 281dbfefdd..d67bbfb248 100644 --- a/deal.II/examples/step-51/step-51.cc +++ b/deal.II/examples/step-51/step-51.cc @@ -32,17 +32,19 @@ #include #include #include -#include #include #include +#include #include #include +#include #include #include #include #include #include #include +#include #include #include @@ -270,7 +272,7 @@ private: void assemble_system (const bool reconstruct_trace = false); void solve (); void postprocess (); - void refine_mesh (); + void refine_grid (const unsigned int cylce); void output_results (const unsigned int cycle); Triangulation triangulation; @@ -652,8 +654,8 @@ Step51::postprocess() const unsigned int n_q_points = quadrature.size(); std::vector u_values(n_q_points); std::vector > u_gradients(n_q_points); - FEValuesExtractors::Vector gradients(0); - FEValuesExtractors::Scalar values(dim); + FEValuesExtractors::Vector fluxes(0); + FEValuesExtractors::Scalar scalar(dim); FEValues fe_values_local(mapping, fe_local, quadrature, update_values); FullMatrix cell_matrix(fe_u_post.dofs_per_cell, fe_u_post.dofs_per_cell); @@ -669,8 +671,8 @@ Step51::postprocess() fe_values.reinit(cell); fe_values_local.reinit(cell_loc); - fe_values_local[values].get_function_values(solution_local, u_values); - fe_values_local[gradients].get_function_values(solution_local, u_gradients); + fe_values_local[scalar].get_function_values(solution_local, u_values); + fe_values_local[fluxes].get_function_values(solution_local, u_gradients); for (unsigned int i=1; i::output_results (const unsigned int cycle) - template -void Step51::run () +void Step51::refine_grid (const unsigned int cycle) { const bool do_cube = true; - if (!do_cube) + if (cycle == 0) { - GridGenerator::hyper_ball (triangulation); - static const HyperBallBoundary boundary; - triangulation.set_boundary(0, boundary); - triangulation.refine_global(6-2*dim); + if (!do_cube) + { + GridGenerator::hyper_ball (triangulation); + static const HyperBallBoundary boundary; + triangulation.set_boundary(0, boundary); + triangulation.refine_global(6-2*dim); + } + else + GridGenerator::subdivided_hyper_cube (triangulation, 2, -1, 1); } + else + switch (refinement_mode) + { + case global_refinement: + { + if (do_cube) + { + triangulation.clear(); + GridGenerator::subdivided_hyper_cube (triangulation, 2+(cycle%2), -1, 1); + triangulation.refine_global(3-dim+cycle/2); + } + else + triangulation.refine_global (1); + break; + } + + case adaptive_refinement: + { + Vector estimated_error_per_cell (triangulation.n_active_cells()); + FEValuesExtractors::Scalar scalar(dim); + typename FunctionMap::type neumann_boundary; + KellyErrorEstimator::estimate (dof_handler_local, + QGauss(3), + neumann_boundary, + solution_local, + estimated_error_per_cell, + fe_local.component_mask(scalar)); + + GridRefinement::refine_and_coarsen_fixed_number (triangulation, + estimated_error_per_cell, + 0.3, 0.); + + triangulation.execute_coarsening_and_refinement (); + + break; + } + + default: + { + Assert (false, ExcNotImplemented()); + } + } + } + + + + + +template +void Step51::run () +{ for (unsigned int cycle=0; cycle<10; ++cycle) { std::cout << "Cycle " << cycle << ':' << std::endl; - - if (do_cube) - { - triangulation.clear(); - GridGenerator::subdivided_hyper_cube (triangulation, 2+(cycle%2), -1, 1); - triangulation.refine_global(3-dim+cycle/2); - } - else triangulation.refine_global(1); - + + refine_grid (cycle); setup_system (); assemble_system (false); solve (); diff --git a/deal.II/include/deal.II/fe/fe_face.h b/deal.II/include/deal.II/fe/fe_face.h index a091042adb..3047f7a06a 100644 --- a/deal.II/include/deal.II/fe/fe_face.h +++ b/deal.II/include/deal.II/fe/fe_face.h @@ -25,9 +25,12 @@ DEAL_II_NAMESPACE_OPEN /** - * A finite element, which is a tensor product polynomial on each face - * and undefined in the interior of the cells. The basis functions on - * the faces are from Polynomials::LagrangeEquidistant + * A finite element, which is a tensor product polynomial on each face and + * undefined in the interior of the cells. The basis functions on the faces + * are Lagrange polynomials based on the support points of the + * (dim-1)-dimensional Gauss--Lobatto quadrature rule. For element degree one + * and two, the polynomials hence correspond to the usual Lagrange polynomials + * on equidistant points. * * This finite element is the trace space of FE_RaviartThomas on the * faces and serves in hybridized methods. @@ -39,13 +42,9 @@ DEAL_II_NAMESPACE_OPEN * element space, but all shape function values extracted will equal * to zero. * - * @todo Polynomials::LagrangeEquidistant should be and will be - * replaced by Polynomials::LagrangeGaussLobatto as soon as such a - * polynomial set exists. - * * @ingroup fe - * @author Guido Kanschat - * @date 2009, 2011 + * @author Guido Kanschat, Martin Kronbichler + * @date 2009, 2011, 2013 */ template class FE_FaceQ : public FE_PolyFace, dim, spacedim> @@ -67,6 +66,31 @@ public: */ virtual std::string get_name () const; + /** + * Return the matrix interpolating from a face of of one element to the face + * of the neighboring element. The size of the matrix is then + * source.dofs_per_face times this->dofs_per_face. This + * element only provides interpolation matrices for elements of the same + * type and FE_Nothing. For all other elements, an exception of type + * FiniteElement::ExcInterpolationNotImplemented is thrown. + */ + virtual void + get_face_interpolation_matrix (const FiniteElement &source, + FullMatrix &matrix) const; + + /** + * Return the matrix interpolating from a face of of one element to the face + * of the neighboring element. The size of the matrix is then + * source.dofs_per_face times this->dofs_per_face. This + * element only provides interpolation matrices for elements of the same + * type and FE_Nothing. For all other elements, an exception of type + * FiniteElement::ExcInterpolationNotImplemented is thrown. + */ + virtual void + get_subface_interpolation_matrix (const FiniteElement &source, + const unsigned int subface, + FullMatrix &matrix) const; + /** * Check for non-zero values on a face. * @@ -78,6 +102,28 @@ public: virtual bool has_support_on_face (const unsigned int shape_index, const unsigned int face_index) const; + /** + * Return whether this element implements its hanging node constraints in + * the new way, which has to be used to make elements "hp compatible". + * + * For the FE_Q class the result is always true (independent of the degree + * of the element), as it implements the complete set of functions necessary + * for hp capability. + */ + virtual bool hp_constraints_are_implemented () const; + + /** + * Return whether this element dominates the one given as argument when they + * meet at a common face, whether it is the other way around, whether + * neither dominates, or if either could dominate. + * + * For a definition of domination, see FiniteElementBase::Domination and in + * particular the @ref hp_paper "hp paper". + */ + virtual + FiniteElementDomination::Domination + compare_for_face_domination (const FiniteElement &fe_other) const; + private: /** * Return vector with dofs per vertex, line, quad, hex. diff --git a/deal.II/include/deal.II/fe/fe_q_base.h b/deal.II/include/deal.II/fe/fe_q_base.h index 6f17bd38a4..0bbeb3bf73 100644 --- a/deal.II/include/deal.II/fe/fe_q_base.h +++ b/deal.II/include/deal.II/fe/fe_q_base.h @@ -62,13 +62,11 @@ public: /** * Return the matrix interpolating from a face of of one element to the face * of the neighboring element. The size of the matrix is then - * source.dofs_per_face times this->dofs_per_face. - * - * Derived elements will have to implement this function. They may only - * provide interpolation matrices for certain source finite elements, for - * example those from the same family. If they don't implement interpolation - * from a given element, then they must throw an exception of type - * FiniteElement::ExcInterpolationNotImplemented. + * source.dofs_per_face times this->dofs_per_face. The + * FE_Q element family only provides interpolation matrices for elements of + * the same type and FE_Nothing. For all other elements, an exception of + * type FiniteElement::ExcInterpolationNotImplemented is + * thrown. */ virtual void get_face_interpolation_matrix (const FiniteElement &source, @@ -77,13 +75,11 @@ public: /** * Return the matrix interpolating from a face of of one element to the face * of the neighboring element. The size of the matrix is then - * source.dofs_per_face times this->dofs_per_face. - * - * Derived elements will have to implement this function. They may only - * provide interpolation matrices for certain source finite elements, for - * example those from the same family. If they don't implement interpolation - * from a given element, then they must throw an exception of type - * FiniteElement::ExcInterpolationNotImplemented. + * source.dofs_per_face times this->dofs_per_face. The + * FE_Q element family only provides interpolation matrices for elements of + * the same type and FE_Nothing. For all other elements, an exception of + * type FiniteElement::ExcInterpolationNotImplemented is + * thrown. */ virtual void get_subface_interpolation_matrix (const FiniteElement &source, diff --git a/deal.II/source/fe/fe_face.cc b/deal.II/source/fe/fe_face.cc index b8637568fc..30c23b4c26 100644 --- a/deal.II/source/fe/fe_face.cc +++ b/deal.II/source/fe/fe_face.cc @@ -17,15 +17,33 @@ #include #include +#include +#include #include DEAL_II_NAMESPACE_OPEN + +namespace +{ + std::vector > + get_QGaussLobatto_points (const unsigned int degree) + { + if (degree > 0) + { + QGaussLobatto<1> quad(degree+1); + return quad.get_points(); + } + else + return std::vector >(1, Point<1>(0.5)); + } +} + template FE_FaceQ::FE_FaceQ (const unsigned int degree) : FE_PolyFace, dim, spacedim> ( - TensorProductPolynomials(Polynomials::LagrangeEquidistant::generate_complete_basis(degree)), + TensorProductPolynomials(Polynomials::generate_complete_Lagrange_basis(get_QGaussLobatto_points(degree))), FiniteElementData(get_dpo_vector(degree), 1, degree, FiniteElementData::L2), std::vector(1,true)) { @@ -40,22 +58,42 @@ FE_FaceQ::FE_FaceQ (const unsigned int degree) { const double step = 1./this->degree; Point p; + std::vector > points = get_QGaussLobatto_points(degree); unsigned int k=0; for (unsigned int iz=0; iz <= ((codim>2) ? this->degree : 0) ; ++iz) for (unsigned int iy=0; iy <= ((codim>1) ? this->degree : 0) ; ++iy) for (unsigned int ix=0; ix<=this->degree; ++ix) { - p(0) = ix * step; + p(0) = points[ix][0]; if (codim>1) - p(1) = iy * step; + p(1) = points[iy][0]; if (codim>2) - p(2) = iz * step; + p(2) = points[iz][0]; this->unit_face_support_points[k++] = p; } AssertDimension (k, this->unit_face_support_points.size()); } + + // initialize unit support points + this->unit_support_points.resize(GeometryInfo::faces_per_cell* + this->unit_face_support_points.size()); + const unsigned int n_face_dofs = this->unit_face_support_points.size(); + for (unsigned int i=0; iunit_support_points[n_face_dofs*2*d+i][e] = + this->unit_face_support_points[i][c]; + this->unit_support_points[n_face_dofs*(2*d+1)+i][e] = + this->unit_face_support_points[i][c]; + this->unit_support_points[n_face_dofs*(2*d+1)+i][d] = 1; + ++c; + } + } } @@ -86,6 +124,170 @@ FE_FaceQ::get_name () const +template +void +FE_FaceQ:: +get_face_interpolation_matrix (const FiniteElement &x_source_fe, + FullMatrix &interpolation_matrix) const +{ + // this function is similar to the respective method in FE_Q + + // this is only implemented, if the source FE is also a FE_FaceQ element + AssertThrow ((dynamic_cast *>(&x_source_fe) != 0), + (typename FiniteElement:: + ExcInterpolationNotImplemented())); + + Assert (interpolation_matrix.n() == this->dofs_per_face, + ExcDimensionMismatch (interpolation_matrix.n(), + this->dofs_per_face)); + Assert (interpolation_matrix.m() == x_source_fe.dofs_per_face, + ExcDimensionMismatch (interpolation_matrix.m(), + x_source_fe.dofs_per_face)); + + // ok, source is a FaceQ element, so we will be able to do the work + const FE_FaceQ &source_fe + = dynamic_cast&>(x_source_fe); + + // Make sure that the element for which the DoFs should be constrained is + // the one with the higher polynomial degree. Actually the procedure will + // work also if this assertion is not satisfied. But the matrices produced + // in that case might lead to problems in the hp procedures, which use this + // method. + Assert (this->dofs_per_face <= source_fe.dofs_per_face, + (typename FiniteElement:: + ExcInterpolationNotImplemented ())); + + // generate a quadrature with the unit face support points. + Quadrature face_quadrature (source_fe.get_unit_face_support_points ()); + + // Rule of thumb for FP accuracy, that can be expected for a given + // polynomial degree. This value is used to cut off values close to zero. + const double eps = 2e-13*this->degree*(dim-1); + + // compute the interpolation matrix by simply taking the value at the + // support points. + for (unsigned int i=0; i &p = face_quadrature.point (i); + + for (unsigned int j=0; jdofs_per_face; ++j) + { + double matrix_entry = this->poly_space.compute_value (j, p); + + // Correct the interpolated value. I.e. if it is close to 1 or 0, + // make it exactly 1 or 0. Unfortunately, this is required to avoid + // problems with higher order elements. + if (std::fabs (matrix_entry - 1.0) < eps) + matrix_entry = 1.0; + if (std::fabs (matrix_entry) < eps) + matrix_entry = 0.0; + + interpolation_matrix(i,j) = matrix_entry; + } + } + + // make sure that the row sum of each of the matrices is 1 at this + // point. this must be so since the shape functions sum up to 1 + for (unsigned int j=0; jdofs_per_face; ++i) + sum += interpolation_matrix(j,i); + + Assert (std::fabs(sum-1) < 2e-13*this->degree*(dim-1), + ExcInternalError()); + } +} + + + +template +void +FE_FaceQ:: +get_subface_interpolation_matrix (const FiniteElement &x_source_fe, + const unsigned int subface, + FullMatrix &interpolation_matrix) const +{ + // this function is similar to the respective method in FE_Q + + Assert (interpolation_matrix.n() == this->dofs_per_face, + ExcDimensionMismatch (interpolation_matrix.n(), + this->dofs_per_face)); + Assert (interpolation_matrix.m() == x_source_fe.dofs_per_face, + ExcDimensionMismatch (interpolation_matrix.m(), + x_source_fe.dofs_per_face)); + + // see if source is a FaceQ element + if (const FE_FaceQ *source_fe + = dynamic_cast *>(&x_source_fe)) + { + + // Make sure that the element for which the DoFs should be constrained + // is the one with the higher polynomial degree. Actually the procedure + // will work also if this assertion is not satisfied. But the matrices + // produced in that case might lead to problems in the hp procedures, + // which use this method. + Assert (this->dofs_per_face <= source_fe->dofs_per_face, + (typename FiniteElement:: + ExcInterpolationNotImplemented ())); + + // generate a quadrature with the unit face support points. + Quadrature face_quadrature (source_fe->get_unit_face_support_points ()); + + // Rule of thumb for FP accuracy, that can be expected for a given + // polynomial degree. This value is used to cut off values close to + // zero. + const double eps = 2e-13*this->degree*(dim-1); + + // compute the interpolation matrix by simply taking the value at the + // support points. + for (unsigned int i=0; idofs_per_face; ++i) + { + const Point p = + GeometryInfo::child_to_cell_coordinates (face_quadrature.point(i), + subface); + + for (unsigned int j=0; jdofs_per_face; ++j) + { + double matrix_entry = this->poly_space.compute_value (j, p); + + // Correct the interpolated value. I.e. if it is close to 1 or 0, + // make it exactly 1 or 0. Unfortunately, this is required to avoid + // problems with higher order elements. + if (std::fabs (matrix_entry - 1.0) < eps) + matrix_entry = 1.0; + if (std::fabs (matrix_entry) < eps) + matrix_entry = 0.0; + + interpolation_matrix(i,j) = matrix_entry; + } + } + + // make sure that the row sum of each of the matrices is 1 at this + // point. this must be so since the shape functions sum up to 1 + for (unsigned int j=0; jdofs_per_face; ++j) + { + double sum = 0.; + + for (unsigned int i=0; idofs_per_face; ++i) + sum += interpolation_matrix(j,i); + + Assert (std::fabs(sum-1) < 2e-13*this->degree*(dim-1), + ExcInternalError()); + } + } + else if (dynamic_cast *>(&x_source_fe) != 0) + { + // nothing to do here, the FE_Nothing has no degrees of freedom anyway + } + else + AssertThrow (false,(typename FiniteElement:: + ExcInterpolationNotImplemented())); +} + + + template bool FE_FaceQ::has_support_on_face ( @@ -96,6 +298,7 @@ FE_FaceQ::has_support_on_face ( } + template std::vector FE_FaceQ::get_dpo_vector (const unsigned int deg) @@ -109,6 +312,41 @@ FE_FaceQ::get_dpo_vector (const unsigned int deg) +template +bool +FE_FaceQ::hp_constraints_are_implemented () const +{ + return true; +} + + + +template +FiniteElementDomination::Domination +FE_FaceQ:: +compare_for_face_domination (const FiniteElement &fe_other) const +{ + if (const FE_FaceQ *fe_q_other + = dynamic_cast*>(&fe_other)) + { + if (this->degree < fe_q_other->degree) + return FiniteElementDomination::this_element_dominates; + else if (this->degree == fe_q_other->degree) + return FiniteElementDomination::either_element_can_dominate; + else + return FiniteElementDomination::other_element_dominates; + } + else if (dynamic_cast*>(&fe_other) != 0) + { + // the FE_Nothing has no degrees of freedom and it is typically used in + // a context where we don't require any continuity along the interface + return FiniteElementDomination::no_requirements; + } + + Assert (false, ExcNotImplemented()); + return FiniteElementDomination::neither_element_dominates; +} + // explicit instantiations #include "fe_face.inst" diff --git a/deal.II/source/fe/fe_q_base.cc b/deal.II/source/fe/fe_q_base.cc index 9cae5f3dc4..2540d1cfdc 100644 --- a/deal.II/source/fe/fe_q_base.cc +++ b/deal.II/source/fe/fe_q_base.cc @@ -754,7 +754,7 @@ hp_line_dof_identities (const FiniteElement &fe_other) const { // dofs are located along lines, so two dofs are identical if they are // located at identical positions. if we had only equidistant points, we - // could simple check for similarity like (i+1)*q == (j+1)*p, but we + // could simply check for similarity like (i+1)*q == (j+1)*p, but we // might have other support points (e.g. Gauss-Lobatto // points). Therefore, read the points in unit_support_points for the // first coordinate direction. We take the lexicographic ordering of the diff --git a/tests/fe/shapes_faceq/cmp/generic b/tests/fe/shapes_faceq/cmp/generic index 73baf864ac..ecf589b236 100644 --- a/tests/fe/shapes_faceq/cmp/generic +++ b/tests/fe/shapes_faceq/cmp/generic @@ -105,37 +105,37 @@ DEAL:Face2d-FaceQ2::0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ2:: DEAL:Face2d-FaceQ2:: DEAL:Face2d-FaceQ3::0.00 0.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.00 0.12 1.12 2.05 0.79 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.00 0.25 0.94 1.56 1.56 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.00 0.38 1.04 0.79 2.05 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.00 0.12 1.05 1.99 0.94 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.00 0.25 0.88 1.62 1.62 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.00 0.38 1.02 0.94 1.99 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3::0.00 0.50 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3::0.50 0.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.06 1.00 1.00 1.00 1.00 1.44 1.80 0.69 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.12 1.00 1.00 1.00 1.00 1.12 2.05 0.79 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.19 1.00 1.00 1.00 1.00 0.97 1.92 1.13 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.25 1.00 1.00 1.00 1.00 0.94 1.56 1.56 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.06 1.00 1.00 1.00 1.00 1.40 1.73 0.81 1.06 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.12 1.00 1.00 1.00 1.00 1.05 1.99 0.94 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.19 1.00 1.00 1.00 1.00 0.89 1.91 1.26 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.25 1.00 1.00 1.00 1.00 0.88 1.62 1.62 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3:: -DEAL:Face2d-FaceQ3::0.50 0.25 1.00 1.00 1.00 1.00 0.94 1.56 1.56 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.31 1.00 1.00 1.00 1.00 0.98 1.13 1.92 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.38 1.00 1.00 1.00 1.00 1.04 0.79 2.05 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.50 0.44 1.00 1.00 1.00 1.00 1.06 0.69 1.80 1.44 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.25 1.00 1.00 1.00 1.00 0.88 1.62 1.62 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.31 1.00 1.00 1.00 1.00 0.94 1.26 1.91 0.89 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.38 1.00 1.00 1.00 1.00 1.02 0.94 1.99 1.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.50 0.44 1.00 1.00 1.00 1.00 1.06 0.81 1.73 1.40 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3::0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3::0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.12 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.12 2.05 0.79 1.04 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.25 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.56 1.56 0.94 1.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.38 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 0.79 2.05 1.12 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.12 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.99 0.94 1.02 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.25 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.62 1.62 0.88 1.00 1.00 1.00 1.00 +DEAL:Face2d-FaceQ3::0.38 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 0.94 1.99 1.05 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3::0.50 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 1.00 DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3::0.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 1.00 1.00 1.00 -DEAL:Face2d-FaceQ3::0.12 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.12 2.05 0.79 1.04 -DEAL:Face2d-FaceQ3::0.25 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.56 1.56 0.94 -DEAL:Face2d-FaceQ3::0.38 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.04 0.79 2.05 1.12 +DEAL:Face2d-FaceQ3::0.12 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.99 0.94 1.02 +DEAL:Face2d-FaceQ3::0.25 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 1.62 1.62 0.88 +DEAL:Face2d-FaceQ3::0.38 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02 0.94 1.99 1.05 DEAL:Face2d-FaceQ3::0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 2.00 DEAL:Face2d-FaceQ3:: DEAL:Face2d-FaceQ3::