From: Wolfgang Bangerth Date: Fri, 15 Feb 2013 17:19:50 +0000 (+0000) Subject: German symbol -> HTML equivalent. X-Git-Tag: v8.0.0~1283 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=8d27e7f1f25d87e3a5c2e89e5ed953b095848381;p=dealii.git German symbol -> HTML equivalent. git-svn-id: https://svn.dealii.org/trunk@28408 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/examples/step-42/doc/intro.dox b/deal.II/examples/step-42/doc/intro.dox index a02ffc0a2d..f38144a928 100644 --- a/deal.II/examples/step-42/doc/intro.dox +++ b/deal.II/examples/step-42/doc/intro.dox @@ -132,7 +132,7 @@ Now we want to derive a primal problem which only depends on the displacement $u set $\eta = \xi$ and eliminate the stress $\sigma$ by applying the projection theorem (see Grossmann, Roos: Numerical Treatment of Partial Differential Equations, Springer-Verlag Berlin Heidelberg, 2007 and Frohne: FEM-Simulation -der Umformtechnik metallischer Oberflächen im Mikrokosmos, Ph.D. thesis, +der Umformtechnik metallischer Oberflächen im Mikrokosmos, Ph.D. thesis, University of Siegen, Germany, 2011) on @f{gather*}\left(\sigma - C\varepsilon(u), \tau - \sigma\right) \geq 0,\quad \forall \tau\in \Pi W,@f} which yields with the second inequality:\\