From: Peter Munch Date: Fri, 12 Mar 2021 21:46:17 +0000 (+0100) Subject: Step 74: fix latex formating X-Git-Tag: v9.3.0-rc1~336^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=8ef7eda068422825a37799bd53f01d7680d4a84e;p=dealii.git Step 74: fix latex formating --- diff --git a/examples/step-74/doc/intro.dox b/examples/step-74/doc/intro.dox index 5092b17524..6d1015ac8f 100644 --- a/examples/step-74/doc/intro.dox +++ b/examples/step-74/doc/intro.dox @@ -112,7 +112,7 @@ In order to compute this estimator, in each cell $K$ we compute \eta_{f}^2 &= \sum_{f\in \partial K}\lbrace \sigma \left\| \jump{u_h} \right\|_f^2 + h_f \left\| \jump{\nu \nabla u_h} \cdot \mathbf n \right\|_f^2 \rbrace, \\ \eta_{b}^2 &= \sum_{f\in \partial K \cap \partial \Omega} \sigma \left\| (u_h -g_D) \right\|_f^2. -@f] +@f} Then the square of the error estimate per cell is @f[ \eta_\text{local}^2 =\eta_{c}^2+0.5\eta_{f}^2+\eta_{b}^2. @@ -125,7 +125,7 @@ The error estimate square per cell is then stored in a global vector, whose $l_1

The test case

In the first test problem, we run a convergence test using a smooth manufactured solution with $\nu =1$ in 2D -@f{align*} +@f{align*}{ u&=\sin(2\pi x)\sin(2\pi y), &\qquad\qquad &(x,y)\in\Omega=(0,1)\times (0,1), \\ u&=0, &\qquad\qquad &\text{on } \partial \Omega,