From: Wolfgang Bangerth Date: Fri, 25 Sep 2009 02:47:48 +0000 (+0000) Subject: Allow interfacing in an hp context between FE_Q and FE_Nothing. X-Git-Tag: v8.0.0~7042 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=925e0b911dc3e61f29d56d4c144c5b8fb126fec5;p=dealii.git Allow interfacing in an hp context between FE_Q and FE_Nothing. git-svn-id: https://svn.dealii.org/trunk@19538 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/deal.II/source/fe/fe_q.cc b/deal.II/deal.II/source/fe/fe_q.cc index efd1b08570..fe0d0caebc 100644 --- a/deal.II/deal.II/source/fe/fe_q.cc +++ b/deal.II/deal.II/source/fe/fe_q.cc @@ -2,7 +2,7 @@ // $Id$ // Version: $Name$ // -// Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by the deal.II authors +// Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by the deal.II authors // // This file is subject to QPL and may not be distributed // without copyright and license information. Please refer @@ -15,6 +15,7 @@ #include #include #include +#include #include #include @@ -33,11 +34,11 @@ DEAL_II_NAMESPACE_OPEN // function is static: // -------------------- // template struct int2type {}; -// -// namespace { +// +// namespace { // static void SYMBOL (const int2type<1> & ) {} // } -// +// // template void g() { // SYMBOL(int2type()); // } @@ -120,8 +121,8 @@ namespace FE_Q_Helper const double h = 1./(N-1); return Point<1>(i*h); } - - + + // given N, generate i=0...N-1 // equidistant points in the domain // [0,1]^2 @@ -136,7 +137,7 @@ namespace FE_Q_Helper { Assert (i=4, ExcInternalError()); - + const unsigned int N1d = int_sqrt(N); const double h = 1./(N1d-1); @@ -144,7 +145,7 @@ namespace FE_Q_Helper i/N1d * h); } - + // given N, generate i=0...N-1 // equidistant points in the domain @@ -160,7 +161,7 @@ namespace FE_Q_Helper { Assert (i=8, ExcInternalError()); - + const unsigned int N1d = int_cuberoot(N); const double h = 1./(N1d-1); @@ -168,7 +169,7 @@ namespace FE_Q_Helper (i/N1d)%N1d * h, i/(N1d*N1d) * h); } - + } } @@ -221,7 +222,7 @@ struct FE_Q::Implementation // we seek a relation between x and // y such that // sum_j a_j phi^c_j(x) - // == sum_j b_j phi_j(x) + // == sum_j b_j phi_j(x) // for all points x on the // interface. here, phi^c_j are the // shape functions on the small @@ -307,9 +308,9 @@ struct FE_Q::Implementation for (unsigned int i=0; i::Implementation // auxiliary points in 2d std::vector > p_line(n); - + // Add nodes of lines interior // in the "mother-face" @@ -395,7 +396,7 @@ struct FE_Q::Implementation QProjector::project_to_subface(qline, 2, 1, p_line); for (unsigned int i=0; i (0, 0.5)); - + // DoFs on bordering lines // lines 9-16 for (unsigned int face=0; face::faces_per_cell; ++face) @@ -406,7 +407,7 @@ struct FE_Q::Implementation constraint_points.insert(constraint_points.end(), p_line.begin(), p_line.end()); } - + // Create constraints for // interior nodes std::vector > inner_points(n*n); @@ -416,7 +417,7 @@ struct FE_Q::Implementation // at the moment do this for // isotropic face refinement only - for (unsigned int child=0; + for (unsigned int child=0; child::max_children_per_cell; ++child) for (unsigned int i=0; i::Implementation // Now construct relation between // destination (child) and source (mother) // dofs. - const unsigned int pnts=(fe.degree+1)*(fe.degree+1); + const unsigned int pnts=(fe.degree+1)*(fe.degree+1); const std::vector > polynomial_basis= - Polynomials::Lagrange::generate_complete_basis(points.get_points()); + Polynomials::Lagrange::generate_complete_basis(points.get_points()); const TensorProductPolynomials face_polynomials(polynomial_basis); @@ -513,17 +514,17 @@ struct FE_Q::Implementation unsigned int indices[2] = { fe.face_index_map[j] % (fe.degree + 1), fe.face_index_map[j] / (fe.degree + 1) }; - + for (unsigned int k = 0; k<2; ++k) if (mirror[k]) indices[k] = fe.degree - indices[k]; - + const unsigned int new_index = indices[1] * (fe.degree + 1) + indices[0]; - fe.interface_constraints(i,j) = + fe.interface_constraints(i,j) = face_polynomials.compute_value (new_index, constraint_point); - + // if the value is small up // to round-off, then // simply set it to zero to @@ -542,7 +543,7 @@ struct FE_Q::Implementation }; - + template @@ -560,11 +561,11 @@ FE_Q::FE_Q (const unsigned int degree) Assert (degree > 0, ExcMessage ("This element can only be used for polynomial degrees " "at least zero")); - + std::vector renumber (this->dofs_per_cell); FETools::hierarchic_to_lexicographic_numbering (*this, renumber); this->poly_space.set_numbering(renumber); - + // finally fill in support points // on cell and face initialize_unit_support_points (); @@ -595,7 +596,7 @@ FE_Q::FE_Q (const Quadrature<1> &points) face_index_map(FE_Q_Helper::invert_numbering(face_lexicographic_to_hierarchic_numbering (points.n_quadrature_points-1))) { const unsigned int degree = points.n_quadrature_points-1; - + Assert (degree > 0, ExcMessage ("This element can only be used for polynomial degrees " "at least zero")); @@ -603,11 +604,11 @@ FE_Q::FE_Q (const Quadrature<1> &points) ExcMessage ("The first support point has to be zero.")); Assert (points.point(degree)(0) == 1, ExcMessage ("The last support point has to be one.")); - + std::vector renumber (this->dofs_per_cell); FETools::hierarchic_to_lexicographic_numbering (*this, renumber); this->poly_space.set_numbering(renumber); - + // finally fill in support points // on cell and face initialize_unit_support_points (points); @@ -644,9 +645,9 @@ FE_Q::get_name () const // particular format of the string // this function returns, so they // have to be kept in synch - - std::ostringstream namebuf; - bool type = true; + + std::ostringstream namebuf; + bool type = true; const unsigned int n_points = this->degree +1; std::vector points(n_points); const unsigned int dofs_per_cell = this->dofs_per_cell; @@ -657,7 +658,7 @@ FE_Q::get_name () const // in one coordinate direction. for (unsigned int j=0;j1) ? (unit_support_points[j](1)==0 && + if ((dim>1) ? (unit_support_points[j](1)==0 && ((dim>2) ? unit_support_points[j](2)==0: true)) : true) { if (index == 0) @@ -682,7 +683,7 @@ FE_Q::get_name () const break; } - if (type == true) + if (type == true) namebuf << "FE_Q<" << dim << ">(" << this->degree << ")"; else { @@ -733,7 +734,7 @@ get_interpolation_matrix (const FiniteElement &x_source_fe, (dynamic_cast(&x_source_fe) != 0), typename FEL:: ExcInterpolationNotImplemented()); - + Assert (interpolation_matrix.m() == this->dofs_per_cell, ExcDimensionMismatch (interpolation_matrix.m(), this->dofs_per_cell)); @@ -875,7 +876,7 @@ get_face_interpolation_matrix (const FiniteElement &x_source_fe, (dynamic_cast(&x_source_fe) != 0), typename FEL:: ExcInterpolationNotImplemented()); - + Assert (interpolation_matrix.n() == this->dofs_per_face, ExcDimensionMismatch (interpolation_matrix.n(), this->dofs_per_face)); @@ -902,7 +903,7 @@ get_face_interpolation_matrix (const FiniteElement &x_source_fe, Assert (this->dofs_per_face <= source_fe.dofs_per_face, typename FEL:: ExcInterpolationNotImplemented ()); - + // generate a quadrature // with the unit support points. // This is later based as a @@ -910,14 +911,14 @@ get_face_interpolation_matrix (const FiniteElement &x_source_fe, // which returns the support // points on the face. Quadrature quad_face_support (source_fe.get_unit_face_support_points ()); - + // Rule of thumb for FP accuracy, // that can be expected for a // given polynomial degree. // This value is used to cut // off values close to zero. const double eps = 2e-13*this->degree*(dim-1); - + // compute the interpolation // matrix by simply taking the // value at the support points. @@ -946,7 +947,7 @@ get_face_interpolation_matrix (const FiniteElement &x_source_fe, matrix_entry = 0.0; interpolation_matrix(i,j) = matrix_entry; - } + } } // make sure that the row sum of @@ -985,7 +986,7 @@ get_subface_interpolation_matrix (const FiniteElement &x_source_fe (dynamic_cast(&x_source_fe) != 0), typename FEL:: ExcInterpolationNotImplemented()); - + Assert (interpolation_matrix.n() == this->dofs_per_face, ExcDimensionMismatch (interpolation_matrix.n(), this->dofs_per_face)); @@ -1012,7 +1013,7 @@ get_subface_interpolation_matrix (const FiniteElement &x_source_fe Assert (this->dofs_per_face <= source_fe.dofs_per_face, typename FEL:: ExcInterpolationNotImplemented ()); - + // generate a point on this // cell and evaluate the // shape functions there @@ -1039,7 +1040,7 @@ get_subface_interpolation_matrix (const FiniteElement &x_source_fe const Point &p = subface_quadrature.point (i); for (unsigned int j=0; jdofs_per_face; ++j) - { + { double matrix_entry = this->shape_value (this->face_to_cell_index(j, 0), p); // Correct the interpolated @@ -1094,13 +1095,26 @@ hp_vertex_dof_identities (const FiniteElement &fe_other) const { // we can presently only compute // these identities if both FEs are - // FE_Qs. in that case, there - // should be exactly one single DoF - // of each FE at a vertex, and they - // should have identical value + // FE_Qs or if the other one is an + // FE_Nothing. in the first case, + // there should be exactly one + // single DoF of each FE at a + // vertex, and they should have + // identical value if (dynamic_cast*>(&fe_other) != 0) - return - std::vector > (1, std::make_pair (0U, 0U)); + { + return + std::vector > + (1, std::make_pair (0U, 0U)); + } + else if (dynamic_cast*>(&fe_other) != 0) + { + // the FE_Nothing has no + // degrees of freedom, so there + // are no equivalencies to be + // recorded + return std::vector > (); + } else { Assert (false, ExcNotImplemented()); @@ -1117,7 +1131,8 @@ hp_line_dof_identities (const FiniteElement &fe_other) const { // we can presently only compute // these identities if both FEs are - // FE_Qs + // FE_Qs or if the other one is an + // FE_Nothing if (const FE_Q *fe_q_other = dynamic_cast*>(&fe_other)) { // dofs are located along @@ -1134,16 +1149,24 @@ hp_line_dof_identities (const FiniteElement &fe_other) const // i.e. (i+1)*q == (j+1)*p const unsigned int p = this->degree; const unsigned int q = fe_q_other->degree; - + std::vector > identities; for (unsigned int i=0; i*>(&fe_other) != 0) + { + // the FE_Nothing has no + // degrees of freedom, so there + // are no equivalencies to be + // recorded + return std::vector > (); + } else { Assert (false, ExcNotImplemented()); @@ -1160,7 +1183,8 @@ hp_quad_dof_identities (const FiniteElement &fe_other) cons { // we can presently only compute // these identities if both FEs are - // FE_Qs + // FE_Qs or if the other one is an + // FE_Nothing if (const FE_Q *fe_q_other = dynamic_cast*>(&fe_other)) { // this works exactly like the line @@ -1174,7 +1198,7 @@ hp_quad_dof_identities (const FiniteElement &fe_other) cons // straightforward const unsigned int p = this->degree; const unsigned int q = fe_q_other->degree; - + std::vector > identities; for (unsigned int i1=0; i1 &fe_other) cons ((i2+1)*q == (j2+1)*p)) identities.push_back (std::make_pair(i1*(p-1)+i2, j1*(q-1)+j2)); - + return identities; } + else if (dynamic_cast*>(&fe_other) != 0) + { + // the FE_Nothing has no + // degrees of freedom, so there + // are no equivalencies to be + // recorded + return std::vector > (); + } else { Assert (false, ExcNotImplemented()); @@ -1213,7 +1245,21 @@ compare_for_face_domination (const FiniteElement &fe_other) const else return FiniteElementDomination::other_element_dominates; } - + else if (dynamic_cast*>(&fe_other) != 0) + { + // the FE_Nothing has no + // degrees of + // freedom. nevertheless, we + // say that the FE_Q element + // dominates so that we don't + // have to force the FE_Q side + // to become a zero function + // and rather allow the + // function to be discontinuous + // along the interface + return FiniteElementDomination::this_element_dominates; + } + Assert (false, ExcNotImplemented()); return FiniteElementDomination::neither_element_dominates; } @@ -1232,15 +1278,15 @@ void FE_Q::initialize_unit_support_points () unsigned int n = this->degree+1; for (unsigned int i=1; idegree+1; - + this->unit_support_points.resize(n); const std::vector &index_map_inverse= this->poly_space.get_numbering_inverse(); - + const double step = 1./this->degree; Point p; - + unsigned int k=0; for (unsigned int iz=0; iz <= ((dim>2) ? this->degree : 0) ; ++iz) for (unsigned int iy=0; iy <= ((dim>1) ? this->degree : 0) ; ++iy) @@ -1251,7 +1297,7 @@ void FE_Q::initialize_unit_support_points () p(1) = iy * step; if (dim>2) p(2) = iz * step; - + this->unit_support_points[index_map_inverse[k++]] = p; } } @@ -1265,16 +1311,16 @@ void FE_Q::initialize_unit_support_points (const Quadrature<1> &po unsigned int n = this->degree+1; for (unsigned int i=1; idegree+1; - + this->unit_support_points.resize(n); const std::vector &index_map_inverse= this->poly_space.get_numbering_inverse(); - + Quadrature support_quadrature(points); Point p; - + for (unsigned int k=0;kunit_support_points[index_map_inverse[k]] = support_quadrature.point(k); @@ -1315,20 +1361,20 @@ template void FE_Q::initialize_unit_face_support_points () { const unsigned int codim = dim-1; - + // number of points: (degree+1)^codim unsigned int n = this->degree+1; for (unsigned int i=1; idegree+1; - + this->unit_face_support_points.resize(n); const std::vector &face_index_map_inverse= FE_Q_Helper::invert_numbering(face_index_map); - + const double step = 1./this->degree; Point p; - + unsigned int k=0; for (unsigned int iz=0; iz <= ((codim>2) ? this->degree : 0) ; ++iz) for (unsigned int iy=0; iy <= ((codim>1) ? this->degree : 0) ; ++iy) @@ -1339,7 +1385,7 @@ void FE_Q::initialize_unit_face_support_points () p(1) = iy * step; if (codim>2) p(2) = iz * step; - + this->unit_face_support_points[face_index_map_inverse[k++]] = p; } } @@ -1350,21 +1396,21 @@ template void FE_Q::initialize_unit_face_support_points (const Quadrature<1> &points) { const unsigned int codim = dim-1; - + // number of points: (degree+1)^codim unsigned int n = this->degree+1; for (unsigned int i=1; idegree+1; - + this->unit_face_support_points.resize(n); const std::vector< Point<1> > edge = points.get_points(); const std::vector &face_index_map_inverse= FE_Q_Helper::invert_numbering(face_index_map); - + Point p; - + unsigned int k=0; for (unsigned int iz=0; iz <= ((codim>2) ? this->degree : 0) ; ++iz) for (unsigned int iy=0; iy <= ((codim>1) ? this->degree : 0) ; ++iy) @@ -1375,7 +1421,7 @@ void FE_Q::initialize_unit_face_support_points (const Quadrature<1 p(1) = edge[iy](0); if (codim>2) p(2) = edge[iz](0); - + this->unit_face_support_points[face_index_map_inverse[k++]] = p; } } @@ -1404,7 +1450,7 @@ FE_Q<3>::initialize_quad_dof_index_permutation () // alias for the table to fill Table<2,int> &data=this->adjust_quad_dof_index_for_face_orientation_table; - + // the dofs on a face are connected to a n x // n matrix. for example, for degree==4 we // have the following dofs on a quad @@ -1433,7 +1479,7 @@ FE_Q<3>::initialize_quad_dof_index_permutation () { unsigned int i=local%n, j=local/n; - + // face_orientation=false, face_flip=false, face_rotation=false data(local,0)=j + i *n - local; // face_orientation=false, face_flip=false, face_rotation=true @@ -1478,7 +1524,7 @@ std::vector FE_Q::face_lexicographic_to_hierarchic_numbering (const unsigned int degree) { const FiniteElementData face_data(FE_Q::get_dpo_vector(degree),1,degree); - std::vector face_renumber (face_data.dofs_per_cell); + std::vector face_renumber (face_data.dofs_per_cell); FETools::lexicographic_to_hierarchic_numbering (face_data, face_renumber); return face_renumber; } @@ -1597,7 +1643,7 @@ FE_Q::initialize_embedding () = FE_Q_Helper::generate_unit_point (index_map[j], this->dofs_per_cell, dealii::internal::int2type()); const Point p_cell = - GeometryInfo::child_to_cell_coordinates (p_subcell, child, + GeometryInfo::child_to_cell_coordinates (p_subcell, child, RefinementCase(ref+1)); for (unsigned int i=0; idofs_per_cell; ++i) @@ -1634,7 +1680,7 @@ FE_Q::initialize_embedding () if (std::fabs(cell_value) < eps) this->prolongation[ref][child](subcell_permutations[j],i) = 0; else - this->prolongation[ref][child](subcell_permutations[j],i) = + this->prolongation[ref][child](subcell_permutations[j],i) = cell_value; } } @@ -1860,10 +1906,10 @@ FE_Q::has_support_on_face (const unsigned int shape_index, || ((dim==3) && (shape_index>=this->first_hex_index))) return false; - + // let's see whether this is a // vertex - if (shape_index < this->first_line_index) + if (shape_index < this->first_line_index) { // for Q elements, there is // one dof per vertex, so @@ -1912,12 +1958,12 @@ FE_Q::has_support_on_face (const unsigned int shape_index, else if (shape_index < this->first_hex_index) // dof is on a quad { - const unsigned int quad_index + const unsigned int quad_index = (shape_index - this->first_quad_index) / this->dofs_per_quad; Assert (static_cast(quad_index) < static_cast(GeometryInfo::quads_per_cell), ExcInternalError()); - + // in 2d, cell bubble are // zero on all faces. but // we have treated this