From: Martin Kronbichler Date: Tue, 22 Aug 2023 12:04:29 +0000 (+0200) Subject: Matrix-free ShapeInfo: Simplify initialization of Raviart-Thomas X-Git-Tag: relicensing~562^2 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=92d3ad8a9df6dc974542acda0bdd1e5d2734b387;p=dealii.git Matrix-free ShapeInfo: Simplify initialization of Raviart-Thomas --- diff --git a/include/deal.II/matrix_free/shape_info.h b/include/deal.II/matrix_free/shape_info.h index 258d8f23ce..857490f6b6 100644 --- a/include/deal.II/matrix_free/shape_info.h +++ b/include/deal.II/matrix_free/shape_info.h @@ -144,6 +144,22 @@ namespace internal std::size_t memory_consumption() const; + /** + * Evaluate the finite element shape functions at the points of the + * given quadrature formula, filling the fields + * shape_[values,gradients,hessians] and related information. + * + * The two last arguments 'lexicographic' and 'direction' are used to + * describe the unknowns along a single dimension, and the respective + * direction of derivatives. + */ + template + void + evaluate_shape_functions(const FiniteElement &fe, + const Quadrature<1> & quad, + const std::vector &lexicographic, + const unsigned int direction); + /** * Evaluate the auxiliary polynomial space associated with the Lagrange * polynomials in points of the given quadrature formula, filling the diff --git a/include/deal.II/matrix_free/shape_info.templates.h b/include/deal.II/matrix_free/shape_info.templates.h index c743f6831e..d49dbabc31 100644 --- a/include/deal.II/matrix_free/shape_info.templates.h +++ b/include/deal.II/matrix_free/shape_info.templates.h @@ -289,112 +289,15 @@ namespace internal // 'direction' distinguishes between normal and tangential direction for (unsigned int direction = 0; direction < 2; ++direction) { - UnivariateShapeData &univariate_shape_data = - (direction == 0) ? data.front() : data.back(); - - univariate_shape_data.element_type = tensor_raviart_thomas; - univariate_shape_data.quadrature = quad; - univariate_shape_data.n_q_points_1d = n_q_points_1d; - univariate_shape_data.fe_degree = fe.degree - direction; - - // grant write access to common univariate shape data - auto &shape_values = univariate_shape_data.shape_values; - auto &shape_gradients = univariate_shape_data.shape_gradients; - auto &shape_hessians = univariate_shape_data.shape_hessians; - - auto &values_within_subface = - univariate_shape_data.values_within_subface; - auto &gradients_within_subface = - univariate_shape_data.gradients_within_subface; - auto &hessians_within_subface = - univariate_shape_data.hessians_within_subface; - - auto &shape_data_on_face = - univariate_shape_data.shape_data_on_face; - - const unsigned int n_dofs_1d = fe.degree + 1 - direction; - const unsigned int array_size = n_dofs_1d * n_q_points_1d; - - shape_gradients.resize_fast(array_size); - shape_values.resize_fast(array_size); - shape_hessians.resize_fast(array_size); - - values_within_subface[0].resize(array_size); - values_within_subface[1].resize(array_size); - gradients_within_subface[0].resize(array_size); - gradients_within_subface[1].resize(array_size); - hessians_within_subface[0].resize(array_size); - hessians_within_subface[1].resize(array_size); - - shape_data_on_face[0].resize(3 * n_dofs_1d); - shape_data_on_face[1].resize(3 * n_dofs_1d); - - Point unit_point; - for (unsigned int i = 0; i < n_dofs_1d; ++i) - { - // need to reorder from hierarchical to lexicographic to get - // the DoFs correct - const unsigned int my_i = - (direction == 0) ? lex_normal[i] : lex_tangent[i]; - for (unsigned int q = 0; q < n_q_points_1d; ++q) - { - Point q_point = unit_point; - q_point[direction] = quad.get_points()[q][0]; - - shape_values[i * n_q_points_1d + q] = - fe.shape_value_component(my_i, q_point, 0); - shape_gradients[i * n_q_points_1d + q] = - fe.shape_grad_component(my_i, q_point, 0)[direction]; - shape_hessians[i * n_q_points_1d + q] = - fe.shape_grad_grad_component(my_i, - q_point, - 0)[direction][direction]; - - // evaluate basis functions on the two 1d subfaces (i.e., - // at the positions divided by one half and shifted by one - // half, respectively) for hanging nodes - q_point[direction] *= 0.5; - values_within_subface[0][i * n_q_points_1d + q] = - fe.shape_value_component(my_i, q_point, 0); - gradients_within_subface[0][i * n_q_points_1d + q] = - fe.shape_grad_component(my_i, q_point, 0)[direction]; - hessians_within_subface[0][i * n_q_points_1d + q] = - fe.shape_grad_grad_component(my_i, - q_point, - 0)[direction][direction]; - q_point[direction] += 0.5; - values_within_subface[1][i * n_q_points_1d + q] = - fe.shape_value_component(my_i, q_point, 0); - gradients_within_subface[1][i * n_q_points_1d + q] = - fe.shape_grad_component(my_i, q_point, 0)[direction]; - hessians_within_subface[1][i * n_q_points_1d + q] = - fe.shape_grad_grad_component(my_i, - q_point, - 0)[direction][direction]; - } - // evaluate basis functions on the 1d faces, i.e., in zero and - // one - Point q_point = unit_point; - q_point[direction] = 0; - shape_data_on_face[0][i] = - fe.shape_value_component(my_i, q_point, 0); - shape_data_on_face[0][i + n_dofs_1d] = - fe.shape_grad_component(my_i, q_point, 0)[direction]; - shape_data_on_face[0][i + 2 * n_dofs_1d] = - fe.shape_grad_grad_component(my_i, - q_point, - 0)[direction][direction]; - q_point[direction] = 1; - shape_data_on_face[1][i] = - fe.shape_value_component(my_i, q_point, 0); - shape_data_on_face[1][i + n_dofs_1d] = - fe.shape_grad_component(my_i, q_point, 0)[direction]; - shape_data_on_face[1][i + 2 * n_dofs_1d] = - fe.shape_grad_grad_component(my_i, - q_point, - 0)[direction][direction]; - } + data[direction].element_type = tensor_raviart_thomas; + data[direction].quadrature = quad; + data[direction].n_q_points_1d = n_q_points_1d; + data[direction].fe_degree = fe.degree - direction; } + + data[0].evaluate_shape_functions(fe, quad, lex_normal, 0); + data[1].evaluate_shape_functions(fe, quad, lex_tangent, 1); + return; } else if (quad_in.is_tensor_product() == false || @@ -609,19 +512,6 @@ namespace internal if ((fe.n_dofs_per_cell() == 0) || (quad.empty())) return; - // grant write access to common univariate shape data - auto &shape_values = univariate_shape_data.shape_values; - auto &shape_gradients = univariate_shape_data.shape_gradients; - auto &shape_hessians = univariate_shape_data.shape_hessians; - auto &shape_data_on_face = univariate_shape_data.shape_data_on_face; - auto &values_within_subface = univariate_shape_data.values_within_subface; - auto &gradients_within_subface = - univariate_shape_data.gradients_within_subface; - auto &hessians_within_subface = - univariate_shape_data.hessians_within_subface; - auto &nodal_at_cell_boundaries = - univariate_shape_data.nodal_at_cell_boundaries; - const unsigned int fe_degree = fe.degree; const unsigned int n_q_points_1d = quad.size(); const unsigned int n_dofs_1d = @@ -631,31 +521,14 @@ namespace internal // vertex DoFs come first, which is incompatible with the lexicographic // ordering necessary to apply tensor products efficiently) std::vector scalar_lexicographic; - Point unit_point; - { - // find numbering to lexicographic - Assert(fe.n_components() == 1, ExcMessage("Expected a scalar element")); - - get_element_type_specific_information(fe_in, - fe, - base_element_number, - element_type, - scalar_lexicographic, - lexicographic_numbering); - - // to evaluate 1d polynomials, evaluate along the line with the first - // unit support point, assuming that fe.shape_value(0,unit_point) == - // 1. otherwise, need other entry point (e.g. generating a 1d element - // by reading the name, as done before r29356) - if (fe.has_support_points()) - unit_point = fe.get_unit_support_points()[scalar_lexicographic[0]]; - Assert(fe.n_dofs_per_cell() == 0 || - std::abs(fe.shape_value(scalar_lexicographic[0], unit_point) - - 1) < 1e-13, - ExcInternalError("Could not decode 1d shape functions for the " - "element " + - fe.get_name())); - } + Assert(fe.n_components() == 1, ExcMessage("Expected a scalar element")); + + get_element_type_specific_information(fe_in, + fe, + base_element_number, + element_type, + scalar_lexicographic, + lexicographic_numbering); n_q_points = Utilities::fixed_power(n_q_points_1d); n_q_points_face = @@ -664,71 +537,10 @@ namespace internal dofs_per_component_on_face = (dim > 1 ? Utilities::fixed_power(fe_degree + 1) : 1); - const unsigned int array_size = n_dofs_1d * n_q_points_1d; - shape_gradients.resize_fast(array_size); - shape_values.resize_fast(array_size); - shape_hessians.resize_fast(array_size); - - shape_data_on_face[0].resize(3 * n_dofs_1d); - shape_data_on_face[1].resize(3 * n_dofs_1d); - values_within_subface[0].resize(array_size); - values_within_subface[1].resize(array_size); - gradients_within_subface[0].resize(array_size); - gradients_within_subface[1].resize(array_size); - hessians_within_subface[0].resize(array_size); - hessians_within_subface[1].resize(array_size); - - for (unsigned int i = 0; i < n_dofs_1d; ++i) - { - // need to reorder from hierarchical to lexicographic to get the - // DoFs correct - const unsigned int my_i = scalar_lexicographic[i]; - for (unsigned int q = 0; q < n_q_points_1d; ++q) - { - Point q_point = unit_point; - q_point[0] = quad.get_points()[q][0]; - - shape_values[i * n_q_points_1d + q] = - fe.shape_value(my_i, q_point); - shape_gradients[i * n_q_points_1d + q] = - fe.shape_grad(my_i, q_point)[0]; - shape_hessians[i * n_q_points_1d + q] = - fe.shape_grad_grad(my_i, q_point)[0][0]; - - // evaluate basis functions on the two 1d subfaces (i.e., at the - // positions divided by one half and shifted by one half, - // respectively) - q_point[0] *= 0.5; - values_within_subface[0][i * n_q_points_1d + q] = - fe.shape_value(my_i, q_point); - gradients_within_subface[0][i * n_q_points_1d + q] = - fe.shape_grad(my_i, q_point)[0]; - hessians_within_subface[0][i * n_q_points_1d + q] = - fe.shape_grad_grad(my_i, q_point)[0][0]; - q_point[0] += 0.5; - values_within_subface[1][i * n_q_points_1d + q] = - fe.shape_value(my_i, q_point); - gradients_within_subface[1][i * n_q_points_1d + q] = - fe.shape_grad(my_i, q_point)[0]; - hessians_within_subface[1][i * n_q_points_1d + q] = - fe.shape_grad_grad(my_i, q_point)[0][0]; - } - - // evaluate basis functions on the 1d faces, i.e., in zero and one - Point q_point = unit_point; - q_point[0] = 0; - shape_data_on_face[0][i] = fe.shape_value(my_i, q_point); - shape_data_on_face[0][i + n_dofs_1d] = - fe.shape_grad(my_i, q_point)[0]; - shape_data_on_face[0][i + 2 * n_dofs_1d] = - fe.shape_grad_grad(my_i, q_point)[0][0]; - q_point[0] = 1; - shape_data_on_face[1][i] = fe.shape_value(my_i, q_point); - shape_data_on_face[1][i + n_dofs_1d] = - fe.shape_grad(my_i, q_point)[0]; - shape_data_on_face[1][i + 2 * n_dofs_1d] = - fe.shape_grad_grad(my_i, q_point)[0][0]; - } + univariate_shape_data.evaluate_shape_functions(fe, + quad, + scalar_lexicographic, + 0); if (dim > 1 && (dynamic_cast *>(&fe) || dynamic_cast *>(&fe))) @@ -784,6 +596,8 @@ namespace internal quad, scalar_lexicographic); + const auto &shape_data_on_face = univariate_shape_data.shape_data_on_face; + if (element_type == tensor_general && univariate_shape_data.check_and_set_shapes_symmetric()) { @@ -812,15 +626,15 @@ namespace internal else if (element_type == tensor_symmetric_plus_dg0) univariate_shape_data.check_and_set_shapes_symmetric(); - nodal_at_cell_boundaries = true; + univariate_shape_data.nodal_at_cell_boundaries = true; for (unsigned int i = 1; i < n_dofs_1d; ++i) if (std::abs(get_first_array_element(shape_data_on_face[0][i])) > 1e-13 || std::abs(get_first_array_element(shape_data_on_face[1][i - 1])) > 1e-13) - nodal_at_cell_boundaries = false; + univariate_shape_data.nodal_at_cell_boundaries = false; - if (nodal_at_cell_boundaries == true) + if (univariate_shape_data.nodal_at_cell_boundaries == true) { face_to_cell_index_nodal.reinit(GeometryInfo::faces_per_cell, dofs_per_component_on_face); @@ -911,6 +725,121 @@ namespace internal + template + Point + get_unit_point(const FiniteElement &fe, + const std::vector & lexicographic) + { + Point unit_point; + // to evaluate 1d polynomials, evaluate along the line with the first + // unit support point, assuming that fe.shape_value(0,unit_point) == + // 1. otherwise, need other entry point (e.g. generating a 1d element + // by reading the name, as done before r29356) + if (fe.has_support_points()) + unit_point = fe.get_unit_support_points()[lexicographic[0]]; + Assert(fe.n_dofs_per_cell() == 0 || + std::abs( + fe.shape_value_component(lexicographic[0], unit_point, 0) - + 1) < 1e-13, + ExcInternalError("Could not decode 1d shape functions for the " + "element " + + fe.get_name())); + return unit_point; + } + + + + template + template + void + UnivariateShapeData::evaluate_shape_functions( + const FiniteElement &fe, + const Quadrature<1> & quad, + const std::vector & lexicographic, + const unsigned int direction) + { + const unsigned int n_dofs_1d = + std::min(fe.n_dofs_per_cell(), fe_degree + 1); + + const unsigned int array_size = n_dofs_1d * n_q_points_1d; + shape_gradients.resize_fast(array_size); + shape_values.resize_fast(array_size); + shape_hessians.resize_fast(array_size); + + shape_data_on_face[0].resize(3 * n_dofs_1d); + shape_data_on_face[1].resize(3 * n_dofs_1d); + values_within_subface[0].resize(array_size); + values_within_subface[1].resize(array_size); + gradients_within_subface[0].resize(array_size); + gradients_within_subface[1].resize(array_size); + hessians_within_subface[0].resize(array_size); + hessians_within_subface[1].resize(array_size); + + for (unsigned int i = 0; i < n_dofs_1d; ++i) + { + // need to reorder from hierarchical to lexicographic to get the + // DoFs correct + const unsigned int my_i = lexicographic[i]; + for (unsigned int q = 0; q < n_q_points_1d; ++q) + { + Point q_point = get_unit_point(fe, lexicographic); + q_point[direction] = quad.get_points()[q][0]; + + shape_values[i * n_q_points_1d + q] = + fe.shape_value_component(my_i, q_point, 0); + shape_gradients[i * n_q_points_1d + q] = + fe.shape_grad_component(my_i, q_point, 0)[direction]; + shape_hessians[i * n_q_points_1d + q] = + fe.shape_grad_grad_component(my_i, + q_point, + 0)[direction][direction]; + + // evaluate basis functions on the two 1d subfaces (i.e., at the + // positions divided by one half and shifted by one half, + // respectively) + q_point[direction] *= 0.5; + values_within_subface[0][i * n_q_points_1d + q] = + fe.shape_value_component(my_i, q_point, 0); + gradients_within_subface[0][i * n_q_points_1d + q] = + fe.shape_grad_component(my_i, q_point, 0)[direction]; + hessians_within_subface[0][i * n_q_points_1d + q] = + fe.shape_grad_grad_component(my_i, + q_point, + 0)[direction][direction]; + q_point[direction] += 0.5; + values_within_subface[1][i * n_q_points_1d + q] = + fe.shape_value_component(my_i, q_point, 0); + gradients_within_subface[1][i * n_q_points_1d + q] = + fe.shape_grad_component(my_i, q_point, 0)[direction]; + hessians_within_subface[1][i * n_q_points_1d + q] = + fe.shape_grad_grad_component(my_i, + q_point, + 0)[direction][direction]; + } + + // evaluate basis functions on the 1d faces, i.e., in zero and one + Point q_point = get_unit_point(fe, lexicographic); + q_point[direction] = 0; + shape_data_on_face[0][i] = fe.shape_value_component(my_i, q_point, 0); + shape_data_on_face[0][i + n_dofs_1d] = + fe.shape_grad_component(my_i, q_point, 0)[direction]; + shape_data_on_face[0][i + 2 * n_dofs_1d] = + fe.shape_grad_grad_component(my_i, + q_point, + 0)[direction][direction]; + q_point[direction] = 1; + shape_data_on_face[1][i] = fe.shape_value_component(my_i, q_point, 0); + shape_data_on_face[1][i + n_dofs_1d] = + fe.shape_grad_component(my_i, q_point, 0)[direction]; + shape_data_on_face[1][i + 2 * n_dofs_1d] = + fe.shape_grad_grad_component(my_i, + q_point, + 0)[direction][direction]; + } + } + + + template template void @@ -919,7 +848,6 @@ namespace internal const Quadrature<1> & quad, const std::vector & lexicographic) { - const unsigned int n_q_points_1d = quad.size(); const unsigned int n_dofs_1d = std::min(fe.n_dofs_per_cell(), fe_degree + 1); @@ -1026,8 +954,8 @@ namespace internal for (unsigned int i = 0; i < n_dofs_1d; ++i) for (unsigned int j = 0; j < n_dofs_1d; ++j) { - Point q_point; - q_point[0] = quad_project.point(i)[0]; + Point q_point = get_unit_point(fe, lexicographic); + q_point[0] = quad_project.point(i)[0]; transform_from_gauss(i, j) = fe.shape_value(lexicographic[j], q_point);