From: Guido Kanschat Date: Thu, 4 Jul 2002 14:06:51 +0000 (+0000) Subject: new easy matrix X-Git-Tag: v8.0.0~17756 X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=938c7fed4ad986527836a534505466d1722b7d1d;p=dealii.git new easy matrix git-svn-id: https://svn.dealii.org/trunk@6220 0785d39b-7218-0410-832d-ea1e28bc413d --- diff --git a/deal.II/lac/include/lac/sparse_matrix_ez.h b/deal.II/lac/include/lac/sparse_matrix_ez.h new file mode 100644 index 0000000000..3a4c61c82b --- /dev/null +++ b/deal.II/lac/include/lac/sparse_matrix_ez.h @@ -0,0 +1,1009 @@ +//---------------------------- sparse_matrix.h --------------------------- +// $Id$ +// Version: $Name$ +// +// Copyright (C) 1998, 1999, 2000, 2001, 2002 by the deal.II authors +// +// This file is subject to QPL and may not be distributed +// without copyright and license information. Please refer +// to the file deal.II/doc/license.html for the text and +// further information on this license. +// +//---------------------------- sparse_matrix.h --------------------------- +#ifndef __deal2__sparse_matrix_ez_h +#define __deal2__sparse_matrix_ez_h + + +#include +#include +#include +#include + +template class Vector; +template class FullMatrix; + +/** + * Sparse matrix without sparsity pattern. + * + * Documentation follows. + * + * The name of this matrix is in reverence to a publication of the + * Internal Revenue Service of the United States of America. I hope + * some otheraliens will appreciate it. By the way, the suffix makes + * sense by pronouncing it the American way. + * + * @author Guido Kanschat, 2002 + */ +template +class SparseMatrixEZ : public Subscriptor +{ + public: + /** + * Type of matrix entries. In analogy to + * the STL container classes. + */ + typedef number value_type; + + /** + * Constructor. Initializes an + * empty matrix of dimension zero + * times zero. + */ + SparseMatrixEZ (); + + /** + * Copy constructor. This constructor is + * only allowed to be called if the matrix + * to be copied is empty. This is for the + * same reason as for the + * @p{SparsityPattern}, see there for the + * details. + * + * If you really want to copy a whole + * matrix, you can do so by using the + * @p{copy_from} function. + */ + SparseMatrixEZ (const SparseMatrix &); + + /** + * Constructor. Generates a + * matrix of the given size, + * ready to be filled. + */ + explicit SparseMatrixEZ (unsigned int n_rows, + unsigned int n_columns = n_rows); + + /** + * Destructor. Free all memory, but do not + * release the memory of the sparsity + * structure. + */ + virtual ~SparseMatrixEZ (); + + /** + * Pseudo operator only copying + * empty objects. + */ + SparseMatrixEZ& operator = (const SparseMatrixEZ &); + + /** + * Reinitialize the sparse matrix + * to the dimensions provided. + * The matrix will have no + * entries at this point. + */ + virtual void reinit (unsigned int n_rows, + unsigned int n_columns = n_rows); + + /** + * Release all memory and return + * to a state just like after + * having called the default + * constructor. It also forgets + * the sparsity pattern it was + * previously tied to. + */ + virtual void clear (); + + /** + * Return whether the object is + * empty. It is empty if + * both dimensions are zero. + */ + bool empty () const; + + /** + * Return the dimension of the + * image space. To remember: the + * matrix is of dimension + * $m \times n$. + */ + unsigned int m () const; + + /** + * Return the dimension of the + * range space. To remember: the + * matrix is of dimension + * $m \times n$. + */ + unsigned int n () const; + + /** + * Return the number of nonzero + * elements of this + * matrix. Actually, it returns + * the number of entries in the + * sparsity pattern; if any of + * the entries should happen to + * be zero, it is counted anyway. + */ + unsigned int n_nonzero_elements () const; + + /** + * Return the number of actually + * nonzero elements of this + * matrix. + * + * Note, that this function does + * (in contrary to the + * @p{n_nonzero_elements}) NOT + * count all entries of the + * sparsity pattern but only the + * ones that are nonzero. + */ + unsigned int n_actually_nonzero_elements () const; + + /** + * Set the element @p{(i,j)} to + * @p{value}. Allocates the entry + * if it does not exist. Filters + * out zero automatically. + */ + void set (const unsigned int i, const unsigned int j, + const number value); + + /** + * Add @p{value} to the element + * @p{(i,j)}. Allocates the entry + * if it does not exist. Filters + * out zero automatically. + */ + void add (const unsigned int i, const unsigned int j, + const number value); + + /** + * Symmetrize the matrix by + * forming the mean value between + * the existing matrix and its + * transpose, $A = \frac 12(A+A^T)$. + * + * This operation assumes that + * the underlying sparsity + * pattern represents a symmetric + * object. If this is not the + * case, then the result of this + * operation will not be a + * symmetric matrix, since it + * only explicitly symmetrizes + * by looping over the lower left + * triangular part for efficiency + * reasons; if there are entries + * in the upper right triangle, + * then these elements are missed + * in the + * symmetrization. Symmetrization + * of the sparsity pattern can be + * obtain by the + * @ref{SparsityPattern}@p{::symmetrize} + * function. + */ +// void symmetrize (); + + /** + * Copy the given matrix to this + * one. The operation throws an + * error if the sparsity patterns + * of the two involved matrices + * do not point to the same + * object, since in this case the + * copy operation is + * cheaper. Since this operation + * is notheless not for free, we + * do not make it available + * through @p{operator =}, since + * this may lead to unwanted + * usage, e.g. in copy arguments + * to functions, which should + * really be arguments by + * reference. + * + * The source matrix may be a matrix + * of arbitrary type, as long as its + * data type is convertible to the + * data type of this matrix. + * + * The function returns a reference to + * @p{this}. + */ +// template +// SparseMatrix & +// copy_from (const SparseMatrix &source); + + /** + * This function is complete + * analogous to the + * @ref{SparsityPattern}@p{::copy_from} + * function in that it allows to + * initialize a whole matrix in + * one step. See there for more + * information on argument types + * and their meaning. You can + * also find a small example on + * how to use this function + * there. + * + * The only difference to the + * cited function is that the + * objects which the inner + * iterator points to need to be + * of type @p{std::pair +// void copy_from (const ForwardIterator begin, +// const ForwardIterator end); + + /** + * Copy the nonzero entries of a + * full matrix into this + * object. Previous content is + * deleted. Note that the + * underlying sparsity pattern + * must be appropriate to hold + * the nonzero entries of the + * full matrix. + */ +// template +// void copy_from (const FullMatrix &matrix); + + /** + * Add @p{matrix} scaled by + * @p{factor} to this matrix. The + * function throws an error if + * the sparsity patterns of the + * two involved matrices do not + * point to the same object, + * since in this case the + * operation is cheaper. + * + * The source matrix may be a matrix + * of arbitrary type, as long as its + * data type is convertible to the + * data type of this matrix. + */ +// template +// void add_scaled (const number factor, +// const SparseMatrix &matrix); + + /** + * Return the value of the entry + * (i,j). This may be an + * expensive operation and you + * should always take care where + * to call this function. In + * order to avoid abuse, this + * function throws an exception + * if the required element does + * not exist in the matrix. + * + * In case you want a function + * that returns zero instead (for + * entries that are not in the + * sparsity pattern of the + * matrix), use the @p{el} + * function. + */ + number operator () (const unsigned int i, + const unsigned int j) const; + + /** + * This function is mostly like + * @p{operator()} in that it + * returns the value of the + * matrix entry @p{(i,j)}. The only + * difference is that if this + * entry does not exist in the + * sparsity pattern, then instead + * of raising an exception, zero + * is returned. While this may be + * convenient in some cases, note + * that it is simple to write + * algorithms that are slow + * compared to an optimal + * solution, since the sparsity + * of the matrix is not used. + */ + number el (const unsigned int i, + const unsigned int j) const; + + /** + * Return the main diagonal element in + * the @p{i}th row. This function throws an + * error if the matrix is not square. + * + * This function is considerably + * faster than the @p{operator()}, + * since for square matrices, the + * diagonal entry is always the + * first to be stored in each row + * and access therefore does not + * involve searching for the + * right column number. + */ + number diag_element (const unsigned int i) const; + + /** + * Same as above, but return a + * writeable reference. You're + * sure you know what you do? + */ + number & diag_element (const unsigned int i); + + /** + * Matrix-vector multiplication: + * let $dst = M*src$ with $M$ + * being this matrix. + */ + template + void vmult (Vector &dst, + const Vector &src) const; + + /** + * Matrix-vector multiplication: + * let $dst = M^T*src$ with $M$ + * being this matrix. This + * function does the same as + * @p{vmult} but takes the + * transposed matrix. + */ + template + void Tvmult (Vector &dst, + const Vector &src) const; + + /** + * Adding Matrix-vector + * multiplication. Add $M*src$ on + * $dst$ with $M$ being this + * matrix. + */ + template + void vmult_add (Vector &dst, + const Vector &src) const; + + /** + * Adding Matrix-vector + * multiplication. Add $M^T*src$ + * to $dst$ with $M$ being this + * matrix. This function does the + * same as @p{vmult_add} but takes + * the transposed matrix. + */ + template + void Tvmult_add (Vector &dst, + const Vector &src) const; + + /** + * Return the square of the norm + * of the vector $v$ with respect + * to the norm induced by this + * matrix, + * i.e. $\left(v,Mv\right)$. This + * is useful, e.g. in the finite + * element context, where the + * $L_2$ norm of a function + * equals the matrix norm with + * respect to the mass matrix of + * the vector representing the + * nodal values of the finite + * element function. + * + * Obviously, the matrix needs to + * be square for this operation. + */ + template + somenumber matrix_norm_square (const Vector &v) const; + + /** + * Compute the matrix scalar + * product $\left(u,Mv\right)$. + */ + template + somenumber matrix_scalar_product (const Vector &u, + const Vector &v) const; + + /** + * Return the l1-norm of the matrix, that is + * $|M|_1=max_{all columns j}\sum_{all + * rows i} |M_ij|$, + * (max. sum of columns). + * This is the + * natural matrix norm that is compatible + * to the l1-norm for vectors, i.e. + * $|Mv|_1\leq |M|_1 |v|_1$. + * (cf. Haemmerlin-Hoffmann : Numerische Mathematik) + */ + number l1_norm () const; + + /** + * Return the linfty-norm of the + * matrix, that is + * $|M|_infty=max_{all rows i}\sum_{all + * columns j} |M_ij|$, + * (max. sum of rows). + * This is the + * natural matrix norm that is compatible + * to the linfty-norm of vectors, i.e. + * $|Mv|_infty \leq |M|_infty |v|_infty$. + * (cf. Haemmerlin-Hoffmann : Numerische Mathematik) + */ + number linfty_norm () const; + + /** + * Apply the Jacobi + * preconditioner, which + * multiplies every element of + * the @p{src} vector by the + * inverse of the respective + * diagonal element and + * multiplies the result with the + * damping factor @p{omega}. + */ + template + void precondition_Jacobi (Vector &dst, + const Vector &src, + const number omega = 1.) const; + + /** + * Apply SSOR preconditioning to + * @p{src}. + */ + template + void precondition_SSOR (Vector &dst, + const Vector &src, + const number om = 1.) const; + + /** + * Apply SOR preconditioning matrix to @p{src}. + * The result of this method is + * $dst = (om D - L)^{-1} src$. + */ + template + void precondition_SOR (Vector &dst, + const Vector &src, + const number om = 1.) const; + + /** + * Apply transpose SOR preconditioning matrix to @p{src}. + * The result of this method is + * $dst = (om D - U)^{-1} src$. + */ + template + void precondition_TSOR (Vector &dst, + const Vector &src, + const number om = 1.) const; + + /** + * Perform SSOR preconditioning + * in-place. Apply the + * preconditioner matrix without + * copying to a second vector. + * @p{omega} is the relaxation + * parameter. + */ + template + void SSOR (Vector &v, + const number omega = 1.) const; + + /** + * Perform an SOR preconditioning in-place. + * The result is $v = (\omega D - L)^{-1} v$. + * @p{omega} is the damping parameter. + */ + template + void SOR (Vector &v, + const number om = 1.) const; + + /** + * Perform a transpose SOR preconditioning in-place. + * The result is $v = (\omega D - L)^{-1} v$. + * @p{omega} is the damping parameter. + */ + template + void TSOR (Vector &v, + const number om = 1.) const; + + /** + * Do one SOR step on @p{v}. + * Performs a direct SOR step + * with right hand side @p{b}. + */ + template + void SOR_step (Vector &v, + const Vector &b, + const number om = 1.) const; + + /** + * Do one adjoint SOR step on + * @p{v}. Performs a direct TSOR + * step with right hand side @p{b}. + */ + template + void TSOR_step (Vector &v, + const Vector &b, + const number om = 1.) const; + + /** + * Do one adjoint SSOR step on + * @p{v}. Performs a direct SSOR + * step with right hand side @p{b} + * by performing TSOR after SOR. + */ + template + void SSOR_step (Vector &v, + const Vector &b, + const number om = 1.) const; + + /** + * Print the matrix to the given + * stream, using the format + * @p{(line,col) value}, i.e. one + * nonzero entry of the matrix + * per line. + */ + void print (std::ostream &out) const; + + /** + * Print the matrix in the usual + * format, i.e. as a matrix and + * not as a list of nonzero + * elements. For better + * readability, elements not in + * the matrix are displayed as + * empty space, while matrix + * elements which are explicitly + * set to zero are displayed as + * such. + * + * The parameters allow for a + * flexible setting of the output + * format: @p{precision} and + * @p{scientific} are used to + * determine the number format, + * where @p{scientific} = @p{false} + * means fixed point notation. A + * zero entry for @p{width} makes + * the function compute a width, + * but it may be changed to a + * positive value, if output is + * crude. + * + * Additionally, a character for + * an empty value may be + * specified. + * + * Finally, the whole matrix can + * be multiplied with a common + * denominator to produce more + * readable output, even + * integers. + * + * This function + * may produce @em{large} amounts of + * output if applied to a large matrix! + */ + void print_formatted (std::ostream &out, + const unsigned int precision = 3, + const bool scientific = true, + const unsigned int width = 0, + const char *zero_string = " ", + const double denominator = 1.) const; + + /** + * Determine an estimate for the + * memory consumption (in bytes) + * of this object. + */ + unsigned int memory_consumption () const; + + /** + * Exception + */ + DeclException0 (ExcMatrixNotInitialized); + /** + * Exception + */ + DeclException2 (ExcInvalidIndex, + int, int, + << "The entry with index <" << arg1 << ',' << arg2 + << "> does not exist."); + /** + * Exception + */ + DeclException0 (ExcMatrixNotSquare); + /** + * Exception + */ + DeclException2 (ExcIteratorRange, + int, int, + << "The iterators denote a range of " << arg1 + << " elements, but the given number of rows was " << arg2); + + private: + /** + * The class for storing the + * column number of an entry + * together with its value. + */ + struct Entry + { + /** + * Standard constructor. Sets + * @p{column} to + * @p{invalid_entry}. + */ + Entry(); + + /** + * Constructor. Fills column + * and value. + */ + Entry(unsigned int column, + const number& value); + + /** + * The column number. + */ + unsigned int column; + /** + * The value there. + */ + number value; + /** + * Comparison operator for finding. + */ + bool operator==(const Entry&) const; + + /** + * Less than operator for sorting. + */ + bool operator < (const Entry&) const; + /** + * Non-existent column number. + */ + static const unsigned int invalid_entry = static_cast(-1); + }; + + /** + * The class for storing each row. + */ + class Row + { + public: + /** + * Set an entry to a value. + */ + void set(unsigned int column, + const number& value); + /** + * Add value to an entry. + */ + void add(unsigned int column, + const number& value); + /* + * Access to value. + */ + number& operator() (unsigned int column); + + /** + * Read-only access to value. + */ + const number& operator() (unsigned int column) const; + + /** + * Start of entry list. + */ + std::vector::iterator begin(); + + /** + * Start of constant entry list. + */ + std::vector::const_iterator begin() const; + + /** + * End of entry list. + */ + std::vector::iterator end(); + + /** + * End of constant entry list. + */ + std::vector::const_iterator end() const; + + + private: + /** + * Actual data storage. + */ + std::vector values; + }; + + + /** + * Version of @p{vmult} which only + * performs its actions on the + * region defined by + * @p{[begin_row,end_row)}. This + * function is called by @p{vmult} + * in the case of enabled + * multithreading. + */ + template + void threaded_vmult (Vector &dst, + const Vector &src, + const unsigned int begin_row, + const unsigned int end_row) const; + + /** + * Version of + * @p{matrix_norm_square} which + * only performs its actions on + * the region defined by + * @p{[begin_row,end_row)}. This + * function is called by + * @p{matrix_norm_square} in the + * case of enabled + * multithreading. + */ + template + void threaded_matrix_norm_square (const Vector &v, + const unsigned int begin_row, + const unsigned int end_row, + somenumber *partial_sum) const; + + /** + * Version of + * @p{matrix_scalar_product} which + * only performs its actions on + * the region defined by + * @p{[begin_row,end_row)}. This + * function is called by + * @p{matrix_scalar_product} in the + * case of enabled + * multithreading. + */ + template + void threaded_matrix_scalar_product (const Vector &u, + const Vector &v, + const unsigned int begin_row, + const unsigned int end_row, + somenumber *partial_sum) const; + + /** + * Version of @p{residual} which + * only performs its actions on + * the region defined by + * @p{[begin_row,end_row)} (these + * numbers are the components of + * @p{interval}). This function is + * called by @p{residual} in the + * case of enabled + * multithreading. + */ + template + void threaded_residual (Vector &dst, + const Vector &u, + const Vector &b, + const std::pair interval, + somenumber *partial_norm) const; + + + /** + * Number of columns. This is + * used to check vector + * dimensions only. + */ + unsigned int n_columns; + + /** + * Data storage. + */ + std::vector rows; + + // make all other sparse matrices + // friends + template friend class SparseMatrix; +}; + + +/*---------------------- Inline functions -----------------------------------*/ + +template +inline +SparseMatrixEZ::Entry::Entry(unsigned int column, + const number& value) + : + column(column), + value(value) +{} + + + +template +inline +SparseMatrixEZ::Entry::Entry() + : + column(invalid_entry), + value(0) +{} + + +template +inline +bool +SparseMatrixEZ::Entry::operator==(const Entry& e) const +{ + return column == e.column; +} + + +template +inline +bool +SparseMatrixEZ::Entry::operator<(const Entry& e) const +{ + return column < e.column; +} + + + +template +inline +const number& +SparseMatrixEZ::Row::operator()(unsigned int column) const +{ + // find entry + // return its value + Assert(false, ExcNotImplemented()); + return values[0].value; +} + + +template +inline +number& +SparseMatrixEZ::Row::operator()(unsigned int column) +{ + // find entry + // return its value + Assert(false, ExcNotImplemented()); + return values[0].value; +} + + +template +inline +std::vector::iterator +SparseMatrixEZ::Row::begin() +{ + return values.begin(); +} + + +template +inline +std::vector::const_iterator +SparseMatrixEZ::Row::begin() const +{ + return values.begin(); +} + + +template +inline +std::vector::iterator +SparseMatrixEZ::Row::end() +{ + return values.end(); +} + + +template +inline +std::vector::const_iterator +SparseMatrixEZ::Row::end() const +{ + return values.end(); +} + + +//----------------------------------------------------------------------// +template +inline +unsigned int SparseMatrixEZ::m () const +{ + return rows.size(); +}; + + +template +inline +unsigned int SparseMatrixEZ::n () const +{ + return n_columns; +}; + + +template +inline +void SparseMatrixEZ::set (const unsigned int i, + const unsigned int j, + const number value) +{ + Assert (i +inline +void SparseMatrixEZ::add (const unsigned int i, + const unsigned int j, + const number value) +{ + Assert (i +inline +number SparseMatrixEZ::diag_element (const unsigned int i) const +{ + Assert (i +inline +number & SparseMatrixEZ::diag_element (const unsigned int i) +{ + Assert (i + +template +void +SparseMatrixEZ::Row::set(unsigned int column, + const number& value) +{ + Assert(false, ExcNotImplemented()); +} + + +template +void +SparseMatrixEZ::Row::add(unsigned int column, + const number& value) +{ + Assert(false, ExcNotImplemented()); +} + + +//----------------------------------------------------------------------// + +template +SparseMatrixEZ::SparseMatrixEZ() +{ + n_columns = 0; +} + + +template +SparseMatrixEZ::SparseMatrixEZ(const SparseMatrixEZ&) +{ + Assert(false, ExcNotImplemented()); +} + + +template +SparseMatrixEZ::SparseMatrixEZ(unsigned int n_rows, + unsigned int n_cols) +{ + reinit(n_rows, n_cols); +} + + +template +SparseMatrixEZ::~SparseMatrixEZ() +{} + + +template +SparseMatrixEZ& +SparseMatrixEZ::operator= (const SparseMatrixEZ&) +{ + Assert (false, ExcNotImplemented()); + return *this; +} + + +template +void +SparseMatrixEZ::reinit(unsigned int n_rows, + unsigned int n_cols) +{ + n_columns = n_cols; + rows.resize(n_rows); +} + + +template +void +SparseMatrixEZ::clear() +{ + n_columns = 0; + rows.resize(0); +} + + +template +bool +SparseMatrixEZ::empty() +{ + return ((n_columns == 0) && (rows.size()==0)); +} + + +template +template +void +SparseMatrixEZ::vmult (Vector& dst, + const Vector& src) const +{ + Assert(m() == dst.size(), ExcDimensionMismatch(m(),dst.size())); + Assert(n() == src.size(), ExcDimensionMismatch(n(),src.size())); +} +