From: Giuseppe Orlando Date: Sun, 1 May 2022 18:24:59 +0000 (+0200) Subject: Solver for incompressible NS based on Discontinuous Galerkin TR-BDF2 implemented... X-Git-Url: https://gitweb.dealii.org/cgi-bin/gitweb.cgi?a=commitdiff_plain;h=941791c7517dc145834b52227f558cb8915b1bf9;p=code-gallery.git Solver for incompressible NS based on Discontinuous Galerkin TR-BDF2 implemented with MatrixFree --- diff --git a/NavierStokes_TRBDF2_DG/CMakeLists.txt b/NavierStokes_TRBDF2_DG/CMakeLists.txt new file mode 100644 index 0000000..fcb74dd --- /dev/null +++ b/NavierStokes_TRBDF2_DG/CMakeLists.txt @@ -0,0 +1,54 @@ +## +# CMake script for the NavierStokes_TRBDF2_DG program: +## + +# Set the name of the project and target: +SET(TARGET "NS_TRBDF2_DG") + +# Declare all source files the target consists of. Here, this is only +# the one .cc file, but as you expand your project you may wish +# to add other source files as well. If your project becomes much larger, +# you may want to either replace the following statement by something like +# FILE(GLOB_RECURSE TARGET_SRC "source/*.cc") +# FILE(GLOB_RECURSE TARGET_INC "include/*.h") +# SET(TARGET_SRC ${TARGET_SRC} ${TARGET_INC}) +# or switch altogether to the large project CMakeLists.txt file discussed +# in the "CMake in user projects" page accessible from the "User info" +# page of the documentation. +SET(TARGET_SRC + navier_stokes_TRBDF2_DG.cc + ) + +# Usually, you will not need to modify anything beyond this point... + +CMAKE_MINIMUM_REQUIRED(VERSION 2.8.12) + +FIND_PACKAGE(deal.II 9.2.0 + HINTS ${deal.II_DIR} ${DEAL_II_DIR} ../ ../../ $ENV{DEAL_II_DIR} + ) +IF(NOT ${deal.II_FOUND}) + MESSAGE(FATAL_ERROR "\n" + "*** Could not locate a (sufficiently recent) version of deal.II. ***\n\n" + "You may want to either pass a flag -DDEAL_II_DIR=/path/to/deal.II to cmake\n" + "or set an environment variable \"DEAL_II_DIR\" that contains this path." + ) +ENDIF() + +# +# Are all dependencies fulfilled? +# +IF(NOT DEAL_II_WITH_MPI OR NOT DEAL_II_WITH_P4EST) # keep in one line + MESSAGE(FATAL_ERROR " +Error! This tutorial requires a deal.II library that was configured with the following options: + DEAL_II_WITH_MPI = ON + DEAL_II_WITH_P4EST = ON +However, the deal.II library found at ${DEAL_II_PATH} was configured with these options + DEAL_II_WITH_MPI = ${DEAL_II_WITH_MPI} + DEAL_II_WITH_P4EST = ${DEAL_II_WITH_P4EST} +which conflict with the requirements." + ) +ENDIF() + +DEAL_II_INITIALIZE_CACHED_VARIABLES() +PROJECT(${TARGET}) +DEAL_II_INVOKE_AUTOPILOT() diff --git a/NavierStokes_TRBDF2_DG/README.md b/NavierStokes_TRBDF2_DG/README.md new file mode 100644 index 0000000..e490b57 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/README.md @@ -0,0 +1,104 @@ +# TRBDF2-DG projection solver for the incompressible Navier-Stokes equations + +## Compiling and Running +To generate a makefile for this code using CMake, type the following command into the terminal from the main directory: + + cmake . -DDEAL_II_DIR=/path/to/deal.II + +To compile the code in release mode use: + + make release + +This command will create the executable, NS_TRBDF2_DG. + +To run the code on N processors type the following command into the terminal from the main directory, + + mpirun -np N ./NS_TRBDF2_DG + +The output of the code will be in .vtu format and be written to disk in parallel. The results can be viewed using ParaView. A parameter file called parameter-file.prm has to be present in +the same folder of the executable, following the same structure employed in step-35. Two extra fields are present: saving_directory with the name of the folder where the results should be saved (which has therefore to be created before launching the program) and refinement_iterations that specifies how often the remeshing procedure has to be performed. + + +### The Navier-Stokes equations and the time discretization strategy ### + +In this section, we briefly describe the problem and the approach employed. A detailed explanation of the numerical scheme is reported in [1]. We consider the classical unsteady incompressible Navier-Stokes equations, written in non-dimensional form as: + +$$ +\begin{align*} +\frac{\partial \mathbf{u}}{\partial t} + \nabla\cdot\left(\mathbf{u} \otimes\mathbf{u}\right) + \nabla p &= \frac{1}{Re}\Delta\mathbf{u} + \mathbf{f} \\ +\nabla\cdot\mathbf{u} &= 0, +\end{align*} +$$ + +where $Re$ denotes the Reynolds number. In the case of projection methods, difficulties arise in choosing the boundary conditions to be imposed for the Poisson equation which is to be solved at each time step to compute the pressure. An alternative that allows to avoid or reduce some of these problems is the so-called artificial compressibility formulation. In this formulation, the incompressibility constraint is relaxed and a time evolution equation for the pressure is introduced, which is characterized by an artificial sound speed $ c, $ so as to obtain: + +$$ +\begin{align*} +\frac{\partial\mathbf{u}}{\partial t} + \nabla\cdot\left(\mathbf{u}\otimes\mathbf{u}\right) + \nabla p &= \frac{1}{Re}\Delta\mathbf{u} + \mathbf{f} \\ +\frac{1}{c^2}\frac{\partial p}{\partial t} + \nabla\cdot\mathbf{u} &= 0. +\end{align*} +$$ + +For the sake of simplicity, we shall only consider $\mathbf{f} = \mathbf{0}$. The numerical scheme is an extension of the projection method introduced in [2] based on the TR-BDF2 method. For a generic time-dependent problem $\bm{u}^{'} = \mathcal{N}(\bm{u})$, the TR-BDF2 method can be described in terms of two stages as follows: + +$$ +\begin{align*} +\frac{\bm{u}^{n+\gamma} - \bm{u}^{n}}{\gamma\Delta t} &= \frac{1}{2}\mathcal{N}\left(\bm{u}^{n+\gamma}\right) + \frac{1}{2}\mathcal{N}\left(\bm{u}^{n}\right) \\ +\frac{\bm{u}^{n+1} - \bm{u}^{n + \gamma}}{\left(1 - \gamma\right)\Delta t} &= \frac{1}{2 - \gamma}\mathcal{N}\left(\bm{u}^{n+1}\right) + \frac{1 - \gamma}{2\left(2 - \gamma\right)}\mathcal{N}\left(\bm{u}^{n+\gamma}\right) + \frac{1 - \gamma}{2\left(2 - \gamma\right)}\mathcal{N}\left(\bm{u}^{n}\right). +\end{align*} +$$ + +Following then the projection approach described in [2], the momentum predictor equation for the first stage reads: + +$$ +\begin{eqnarray} +&&\frac{\mathbf{u}^{n+\gamma,\*} - \mathbf{u}^{n}}{\gamma\Delta t} - \frac{1}{2Re}\Delta\mathbf{u}^{n+\gamma,\*} + \frac{1}{2}\nabla\cdot\left(\mathbf{u}^{n+\gamma,\*}\otimes\mathbf{u}^{n+\frac{\gamma}{2}}\right) = \nonumber \\ +&&\frac{1}{2Re}\Delta\mathbf{u}^{n} - \frac{1}{2}\nabla\cdot\left(\mathbf{u}^{n}\otimes\mathbf{u}^{n+\frac{\gamma}{2}}\right) - \nabla p^n \nonumber \\ +&&\mathbf{u}^{n+\gamma,\*}\rvert_{\partial\Omega} = \mathbf{u}_D^{n+\gamma}. \nonumber +\end{eqnarray} +$$ + +Notice that, in order to avoid solving a nonlinear system at each time step, an approximation is introduced in the nonlinear momentum advection term, so that $\mathbf{u}^{n + \frac{\gamma}{2}}$ is defined by extrapolation as + +$$ +\mathbf{u}^{n + \frac{\gamma}{2}} = \left(1 + \frac{\gamma}{2\left(1-\gamma\right)}\right)\mathbf{u}^{n} - \frac{\gamma}{2\left(1-\gamma\right)}\mathbf{u}^{n-1}. +$$ + +For what concerns the pressure, we introduce the intermediate update +$\mathbf{u}^{n+\gamma,\*\*} = \mathbf{u}^{n+\gamma,\*} + \gamma\Delta t\nabla p^{n}$, and we solve the following Helmholtz equation + +$$ +\frac{1}{c^2}\frac{p^{n+\gamma}}{\gamma^2\Delta t^2} -\Delta p^{n+\gamma} = +- \frac{1}{\gamma\Delta t} \nabla\cdot\mathbf{u}^{n+\gamma,\*\*} + \frac{1}{c^2}\frac{p^{n }}{\gamma^2\Delta t^2} +$$ + +and, finally, we set $\mathbf{u}^{n+\gamma} = \mathbf{u}^{n+\gamma,\*\*} - \gamma\Delta t\nabla p^{n+\gamma}$. +The second stage of the TR-BDF2 scheme is performed in a similar manner (see [1] for all the details). + +### Some implementation details ### + +A matrix-free approach was employed like for step-37 or step-50. Another feature of the library which it is possible to employ during the numerical simulations is the mesh adaptation capability. On each element $K$ we define the quantity + +$$ +\eta_K = \text{diam}(K)^2\left\|\nabla \times \mathbf{u}\right\|^2_K +$$ + +that acts as local refinement indicator. The preconditioned conjugate gradient method implemented in the function SolverCG was employed to solve the Helmholtz equations, whereas, for the momentum equations, the GMRES solver +implemented in the function SolverGMRES was used. +A Jacobi preconditioner is used for the two momentum predictors, whereas a Geometric Multigrid preconditioner is employed for the Helmholtz equations (see step-37). + +#### Test case #### + +We test the code with a classical benchmark case, namely the flow past a cylinder in 2D at $Re = 100$ (see [1] for all the details). The image shows the contour plot of the velocity magnitude at $ t = T_{f} = 400 $. The evolution of the lift and drag coefficients from $ t = 385 $ to $ t = T_{f} $ are also reported and the expected periodic behaviour is retrieved. + +![contour](./doc/velocity_magnitude.png) + +![drag](./doc/drag.png) ![lift](./doc/lift.png) +![adaptive grid](./doc/adaptive_mesh.png) + +## References ## + +[1] G. Orlando, A. Della Rocca, P.F. Barbante, L. Bonaventura, and +N. Parolini. An efficient and accurate implicit DG solver for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Fluids, 2022. DOI: 10.1002/FLD.5098 + +[2] A. Della Rocca. Large-Eddy Simulations of Turbulent Reacting Flows with Industrial Applications. PhD thesis. Politecnico di Milano, 2018. http://hdl.handle.net/10589/137775 diff --git a/NavierStokes_TRBDF2_DG/doc/adaptive_mesh.png b/NavierStokes_TRBDF2_DG/doc/adaptive_mesh.png new file mode 100644 index 0000000..3cda6b8 Binary files /dev/null and b/NavierStokes_TRBDF2_DG/doc/adaptive_mesh.png differ diff --git a/NavierStokes_TRBDF2_DG/doc/author b/NavierStokes_TRBDF2_DG/doc/author new file mode 100644 index 0000000..bab3a79 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/doc/author @@ -0,0 +1 @@ +Giuseppe Orlando diff --git a/NavierStokes_TRBDF2_DG/doc/builds-on b/NavierStokes_TRBDF2_DG/doc/builds-on new file mode 100644 index 0000000..948860e --- /dev/null +++ b/NavierStokes_TRBDF2_DG/doc/builds-on @@ -0,0 +1,3 @@ +step-35 +step-37 +step-50 diff --git a/NavierStokes_TRBDF2_DG/doc/dependencies b/NavierStokes_TRBDF2_DG/doc/dependencies new file mode 100644 index 0000000..961aea8 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/doc/dependencies @@ -0,0 +1,2 @@ +DEAL_II_WITH_MPI +DEAL_II_WITH_P4EST diff --git a/NavierStokes_TRBDF2_DG/doc/drag.png b/NavierStokes_TRBDF2_DG/doc/drag.png new file mode 100644 index 0000000..db913db Binary files /dev/null and b/NavierStokes_TRBDF2_DG/doc/drag.png differ diff --git a/NavierStokes_TRBDF2_DG/doc/entry-name b/NavierStokes_TRBDF2_DG/doc/entry-name new file mode 100644 index 0000000..6d92c7f --- /dev/null +++ b/NavierStokes_TRBDF2_DG/doc/entry-name @@ -0,0 +1 @@ +TRBDF2-DG projection solver for the incompressible Navier-Stokes equations diff --git a/NavierStokes_TRBDF2_DG/doc/lift.png b/NavierStokes_TRBDF2_DG/doc/lift.png new file mode 100644 index 0000000..36cd168 Binary files /dev/null and b/NavierStokes_TRBDF2_DG/doc/lift.png differ diff --git a/NavierStokes_TRBDF2_DG/doc/tooltip b/NavierStokes_TRBDF2_DG/doc/tooltip new file mode 100644 index 0000000..2ee7e11 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/doc/tooltip @@ -0,0 +1 @@ +Projection solver for the incompressible Navier-Stokes equations based on a DG spatial discretization and on the TR-BDF2 method for time discretization diff --git a/NavierStokes_TRBDF2_DG/doc/velocity_magnitude.png b/NavierStokes_TRBDF2_DG/doc/velocity_magnitude.png new file mode 100644 index 0000000..a5de311 Binary files /dev/null and b/NavierStokes_TRBDF2_DG/doc/velocity_magnitude.png differ diff --git a/NavierStokes_TRBDF2_DG/equation_data.h b/NavierStokes_TRBDF2_DG/equation_data.h new file mode 100644 index 0000000..24a1762 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/equation_data.h @@ -0,0 +1,83 @@ +// We start by including all the necessary deal.II header files. +// +#include +#include + +// @sect{Equation data} + +// In the next namespace, we declare and implement suitable functions that may be used for the initial and boundary conditions +// +namespace EquationData { + using namespace dealii; + + static const unsigned int degree_p = 1; /*--- Polynomial degree for the pressure. The one for the velocity + will be equal to degree_p + 1, but its value can be easily changed + in the template parameter list of the classes with weak form ---*/ + + // We declare class that describes the boundary conditions and initial one for velocity: + // + template + class Velocity: public Function { + public: + Velocity(const double initial_time = 0.0); + + virtual double value(const Point& p, + const unsigned int component = 0) const override; + + virtual void vector_value(const Point& p, + Vector& values) const override; + }; + + + template + Velocity::Velocity(const double initial_time): Function(dim, initial_time) {} + + + template + double Velocity::value(const Point& p, const unsigned int component) const { + AssertIndexRange(component, 3); + if(component == 0) { + const double Um = 1.5; + const double H = 4.1; + + return 4.0*Um*p(1)*(H - p(1))/(H*H); + } + else + return 0.0; + } + + + template + void Velocity::vector_value(const Point& p, Vector& values) const { + Assert(values.size() == dim, ExcDimensionMismatch(values.size(), dim)); + + for(unsigned int i = 0; i < dim; ++i) + values[i] = value(p, i); + } + + + // We do the same for the pressure + // + template + class Pressure: public Function { + public: + Pressure(const double initial_time = 0.0); + + virtual double value(const Point& p, + const unsigned int component = 0) const override; + }; + + + template + Pressure::Pressure(const double initial_time): Function(1, initial_time) {} + + + template + double Pressure::value(const Point& p, const unsigned int component) const { + (void)component; + AssertIndexRange(component, 1); + + return 22.0 - p(0); + } + +} // namespace EquationData diff --git a/NavierStokes_TRBDF2_DG/navier_stokes_TRBDF2_DG.cc b/NavierStokes_TRBDF2_DG/navier_stokes_TRBDF2_DG.cc new file mode 100644 index 0000000..434a65e --- /dev/null +++ b/NavierStokes_TRBDF2_DG/navier_stokes_TRBDF2_DG.cc @@ -0,0 +1,3045 @@ +/* Author: Giuseppe Orlando, 2022. */ + +// We start by including all the necessary deal.II header files and some C++ +// related ones. +// +#include +#include +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include +#include +#include +#include + +#include +#include +#include + +#include +#include +#include + +#include +#include +#include +#include + +#include +#include +#include + +#include +#include +#include +#include +#include +#include + +#include + +#include "runtime_parameters.h" +#include "equation_data.h" + +// We include the code in a suitable namespace: +// +namespace NS_TRBDF2 { + using namespace dealii; + + // The following class is an auxiliary one for post-processing of the vorticity + // + template + class PostprocessorVorticity: public DataPostprocessor { + public: + virtual void evaluate_vector_field(const DataPostprocessorInputs::Vector& inputs, + std::vector>& computed_quantities) const override; + + virtual std::vector get_names() const override; + + virtual std::vector + get_data_component_interpretation() const override; + + virtual UpdateFlags get_needed_update_flags() const override; + }; + + // This function evaluates the vorticty in both 2D and 3D cases + // + template + void PostprocessorVorticity::evaluate_vector_field(const DataPostprocessorInputs::Vector& inputs, + std::vector>& computed_quantities) const { + const unsigned int n_quadrature_points = inputs.solution_values.size(); + + /*--- Check the correctness of all data structres ---*/ + Assert(inputs.solution_gradients.size() == n_quadrature_points, ExcInternalError()); + Assert(computed_quantities.size() == n_quadrature_points, ExcInternalError()); + + Assert(inputs.solution_values[0].size() == dim, ExcInternalError()); + + if(dim == 2) { + Assert(computed_quantities[0].size() == 1, ExcInternalError()); + } + else { + Assert(computed_quantities[0].size() == dim, ExcInternalError()); + } + + /*--- Compute the vorticty ---*/ + if(dim == 2) { + for(unsigned int q = 0; q < n_quadrature_points; ++q) + computed_quantities[q](0) = inputs.solution_gradients[q][1][0] - inputs.solution_gradients[q][0][1]; + } + else { + for(unsigned int q = 0; q < n_quadrature_points; ++q) { + computed_quantities[q](0) = inputs.solution_gradients[q][2][1] - inputs.solution_gradients[q][1][2]; + computed_quantities[q](1) = inputs.solution_gradients[q][0][2] - inputs.solution_gradients[q][2][0]; + computed_quantities[q](2) = inputs.solution_gradients[q][1][0] - inputs.solution_gradients[q][0][1]; + } + } + } + + // This auxiliary function is required by the base class DataProcessor and simply + // sets the name for the output file + // + template + std::vector PostprocessorVorticity::get_names() const { + std::vector names; + names.emplace_back("vorticity"); + if(dim == 3) { + names.emplace_back("vorticity"); + names.emplace_back("vorticity"); + } + + return names; + } + + // This auxiliary function is required by the base class DataProcessor and simply + // specifies if the vorticity is a scalar (2D) or a vector (3D) + // + template + std::vector + PostprocessorVorticity::get_data_component_interpretation() const { + std::vector interpretation; + if(dim == 2) + interpretation.push_back(DataComponentInterpretation::component_is_scalar); + else { + interpretation.push_back(DataComponentInterpretation::component_is_part_of_vector); + interpretation.push_back(DataComponentInterpretation::component_is_part_of_vector); + interpretation.push_back(DataComponentInterpretation::component_is_part_of_vector); + } + + return interpretation; + } + + // This auxiliary function is required by the base class DataProcessor and simply + // sets which variables have to updated (only the gradients) + // + template + UpdateFlags PostprocessorVorticity::get_needed_update_flags() const { + return update_gradients; + } + + + // The following structs are auxiliary objects for mesh refinement. ScratchData simply sets + // the FEValues object + // + template + struct ScratchData { + ScratchData(const FiniteElement& fe, + const unsigned int quadrature_degree, + const UpdateFlags update_flags): fe_values(fe, QGauss(quadrature_degree), update_flags) {} + + ScratchData(const ScratchData& scratch_data): fe_values(scratch_data.fe_values.get_fe(), + scratch_data.fe_values.get_quadrature(), + scratch_data.fe_values.get_update_flags()) {} + FEValues fe_values; + }; + + + // CopyData simply sets the cell index + // + struct CopyData { + CopyData() : cell_index(numbers::invalid_unsigned_int), value(0.0) {} + + CopyData(const CopyData &) = default; + + unsigned int cell_index; + double value; + }; + + + // @sect{ NavierStokesProjectionOperator::NavierStokesProjectionOperator } + + // The following class sets effecively the weak formulation of the problems for the different stages + // and for both velocity and pressure. + // The template parameters are the dimnesion of the problem, the polynomial degree for the pressure, + // the polynomial degree for the velocity, the number of quadrature points for integrals for the pressure step, + // the number of quadrature points for integrals for the velocity step, the type of vector for storage and the type + // of floating point data (in general double or float for preconditioners structures if desired). + // + template + class NavierStokesProjectionOperator: public MatrixFreeOperators::Base { + public: + NavierStokesProjectionOperator(); + + NavierStokesProjectionOperator(RunTimeParameters::Data_Storage& data); + + void set_dt(const double time_step); + + void set_TR_BDF2_stage(const unsigned int stage); + + void set_NS_stage(const unsigned int stage); + + void set_u_extr(const Vec& src); + + void vmult_rhs_velocity(Vec& dst, const std::vector& src) const; + + void vmult_rhs_pressure(Vec& dst, const std::vector& src) const; + + void vmult_grad_p_projection(Vec& dst, const Vec& src) const; + + virtual void compute_diagonal() override; + + protected: + double Re; + double dt; + + /*--- Parameters of time-marching scheme ---*/ + double gamma; + double a31; + double a32; + double a33; + + unsigned int TR_BDF2_stage; /*--- Flag to denote at which stage of the TR-BDF2 are ---*/ + unsigned int NS_stage; /*--- Flag to denote at which stage of NS solution inside each TR-BDF2 stage we are + (solution of the velocity or of the pressure)---*/ + + virtual void apply_add(Vec& dst, const Vec& src) const override; + + private: + /*--- Auxiliary variable for the TR stage + (just to avoid to report a lot of 0.5 and for my personal choice to be coherent with the article) ---*/ + const double a21 = 0.5; + const double a22 = 0.5; + + /*--- Penalty method parameters, theta = 1 means SIP, while C_p and C_u are the penalization coefficients ---*/ + const double theta_v = 1.0; + const double theta_p = 1.0; + const double C_p = 1.0*(fe_degree_p + 1)*(fe_degree_p + 1); + const double C_u = 1.0*(fe_degree_v + 1)*(fe_degree_v + 1); + + Vec u_extr; /*--- Auxiliary variable to update the extrapolated velocity ---*/ + + EquationData::Velocity vel_boundary_inflow; /*--- Auxiliary variable to impose velocity boundary conditions ---*/ + + /*--- The following functions basically assemble the linear and bilinear forms. Their syntax is due to + the base class MatrixFreeOperators::Base ---*/ + void assemble_rhs_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& cell_range) const; + void assemble_rhs_face_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const; + void assemble_rhs_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const; + + void assemble_rhs_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& cell_range) const; + void assemble_rhs_face_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const; + void assemble_rhs_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const; + + void assemble_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const; + void assemble_face_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const; + void assemble_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const; + + void assemble_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const; + void assemble_face_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const; + void assemble_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const; + + void assemble_cell_term_projection_grad_p(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const; + void assemble_rhs_cell_term_projection_grad_p(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const; + + void assemble_diagonal_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& cell_range) const; + void assemble_diagonal_face_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const; + void assemble_diagonal_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const; + + void assemble_diagonal_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& cell_range) const; + void assemble_diagonal_face_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const; + void assemble_diagonal_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const; + }; + + + // We start with the default constructor. It is important for MultiGrid, so it is fundamental + // to properly set the parameters of the time scheme. + // + template + NavierStokesProjectionOperator:: + NavierStokesProjectionOperator(): + MatrixFreeOperators::Base(), Re(), dt(), gamma(2.0 - std::sqrt(2.0)), a31((1.0 - gamma)/(2.0*(2.0 - gamma))), + a32(a31), a33(1.0/(2.0 - gamma)), TR_BDF2_stage(1), NS_stage(1), u_extr() {} + + + // We focus now on the constructor with runtime parameters storage + // + template + NavierStokesProjectionOperator:: + NavierStokesProjectionOperator(RunTimeParameters::Data_Storage& data): + MatrixFreeOperators::Base(), Re(data.Reynolds), dt(data.dt), + gamma(2.0 - std::sqrt(2.0)), a31((1.0 - gamma)/(2.0*(2.0 - gamma))), + a32(a31), a33(1.0/(2.0 - gamma)), TR_BDF2_stage(1), NS_stage(1), u_extr(), + vel_boundary_inflow(data.initial_time) {} + + + // Setter of time-step (called by Multigrid and in case a smaller time-step towards the end is needed) + // + template + void NavierStokesProjectionOperator:: + set_dt(const double time_step) { + dt = time_step; + } + + + // Setter of TR-BDF2 stage (this can be known only during the effective execution + // and so it has to be demanded to the class that really solves the problem) + // + template + void NavierStokesProjectionOperator:: + set_TR_BDF2_stage(const unsigned int stage) { + AssertIndexRange(stage, 3); + Assert(stage > 0, ExcInternalError()); + + TR_BDF2_stage = stage; + } + + + // Setter of NS stage (this can be known only during the effective execution + // and so it has to be demanded to the class that really solves the problem) + // + template + void NavierStokesProjectionOperator:: + set_NS_stage(const unsigned int stage) { + AssertIndexRange(stage, 4); + Assert(stage > 0, ExcInternalError()); + + NS_stage = stage; + } + + + // Setter of extrapolated velocity for different stages + // + template + void NavierStokesProjectionOperator:: + set_u_extr(const Vec& src) { + u_extr = src; + u_extr.update_ghost_values(); + } + + + // We are in a DG-MatrixFree framework, so it is convenient to compute separately cell contribution, + // internal faces contributions and boundary faces contributions. We start by + // assembling the rhs cell term for the velocity. + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& cell_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read the old velocity, the + extrapolated velocity and the old pressure. 'phi' will be used only to submit the result. + The second argument specifies which dof handler has to be used (in this implementation 0 stands for + velocity and 1 for pressure). ---*/ + FEEvaluation phi(data, 0), + phi_old(data, 0), + phi_old_extr(data, 0); + FEEvaluation phi_old_press(data, 1); + + /*--- We loop over the cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + /*--- Now we need to assign the current cell to each FEEvaluation object and then to specify which src vector + it has to read (the proper order is clearly delegated to the user, which has to pay attention in the function + call to be coherent). ---*/ + phi_old.reinit(cell); + phi_old.gather_evaluate(src[0], true, true); /*--- The 'gather_evaluate' function reads data from the vector. + The second and third parameter specifies if you want to read + values and/or derivative related quantities ---*/ + phi_old_extr.reinit(cell); + phi_old_extr.gather_evaluate(src[1], true, false); + phi_old_press.reinit(cell); + phi_old_press.gather_evaluate(src[2], true, false); + phi.reinit(cell); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_n = phi_old.get_value(q); + const auto& grad_u_n = phi_old.get_gradient(q); + const auto& u_n_gamma_ov_2 = phi_old_extr.get_value(q); + const auto& tensor_product_u_n = outer_product(u_n, u_n_gamma_ov_2); + const auto& p_n = phi_old_press.get_value(q); + auto p_n_times_identity = tensor_product_u_n; + p_n_times_identity = 0; + for(unsigned int d = 0; d < dim; ++d) + p_n_times_identity[d][d] = p_n; + + phi.submit_value(1.0/(gamma*dt)*u_n, q); /*--- 'submit_value' contains quantites that we want to test against the + test function ---*/ + phi.submit_gradient(-a21/Re*grad_u_n + a21*tensor_product_u_n + p_n_times_identity, q); + /*--- 'submit_gradient' contains quantites that we want to test against the gradient of test function ---*/ + } + phi.integrate_scatter(true, true, dst); /*--- 'integrate_scatter' is the responsible of distributing into dst. + The first two boolean parameters specify if we are testing against + the test function and/or its gradient ---*/ + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEEvaluation phi(data, 0), + phi_old(data, 0), + phi_int(data, 0); + FEEvaluation phi_old_press(data, 1); + + /*--- We loop over the cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi_old.reinit(cell); + phi_old.gather_evaluate(src[0], true, true); + phi_int.reinit(cell); + phi_int.gather_evaluate(src[1], true, true); + phi_old_press.reinit(cell); + phi_old_press.gather_evaluate(src[2], true, false); + phi.reinit(cell); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_n = phi_old.get_value(q); + const auto& grad_u_n = phi_old.get_gradient(q); + const auto& u_n_gamma = phi_int.get_value(q); + const auto& grad_u_n_gamma = phi_int.get_gradient(q); + const auto& tensor_product_u_n = outer_product(u_n, u_n); + const auto& tensor_product_u_n_gamma = outer_product(u_n_gamma, u_n_gamma); + const auto& p_n = phi_old_press.get_value(q); + auto p_n_times_identity = tensor_product_u_n; + p_n_times_identity = 0; + for(unsigned int d = 0; d < dim; ++d) + p_n_times_identity[d][d] = p_n; + + phi.submit_value(1.0/((1.0 - gamma)*dt)*u_n_gamma, q); + phi.submit_gradient(a32*tensor_product_u_n_gamma + a31*tensor_product_u_n - + a32/Re*grad_u_n_gamma - a31/Re*grad_u_n + p_n_times_identity, q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + + + // The followinf function assembles rhs face term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_face_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read already available quantities. In this case + we are at the face between two elements and this is the reason of 'FEFaceEvaluation'. It contains an extra + input argument, the second one, that specifies if it is from 'interior' or not---*/ + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_old_p(data, true, 0), + phi_old_m(data, false, 0), + phi_old_extr_p(data, true, 0), + phi_old_extr_m(data, false, 0); + FEFaceEvaluation phi_old_press_p(data, true, 1), + phi_old_press_m(data, false, 1); + + /*--- We loop over the faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_old_p.reinit(face); + phi_old_p.gather_evaluate(src[0], true, true); + phi_old_m.reinit(face); + phi_old_m.gather_evaluate(src[0], true, true); + phi_old_extr_p.reinit(face); + phi_old_extr_p.gather_evaluate(src[1], true, false); + phi_old_extr_m.reinit(face); + phi_old_extr_m.gather_evaluate(src[1], true, false); + phi_old_press_p.reinit(face); + phi_old_press_p.gather_evaluate(src[2], true, false); + phi_old_press_m.reinit(face); + phi_old_press_m.gather_evaluate(src[2], true, false); + phi_p.reinit(face); + phi_m.reinit(face); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); /*--- The normal vector is the same + for both phi_p and phi_m. If the face is interior, + it correspond to the outer normal ---*/ + + const auto& avg_grad_u_old = 0.5*(phi_old_p.get_gradient(q) + phi_old_m.get_gradient(q)); + const auto& avg_tensor_product_u_n = 0.5*(outer_product(phi_old_p.get_value(q), phi_old_extr_p.get_value(q)) + + outer_product(phi_old_m.get_value(q), phi_old_extr_m.get_value(q))); + const auto& avg_p_old = 0.5*(phi_old_press_p.get_value(q) + phi_old_press_m.get_value(q)); + + phi_p.submit_value((a21/Re*avg_grad_u_old - a21*avg_tensor_product_u_n)*n_plus - avg_p_old*n_plus, q); + phi_m.submit_value(-(a21/Re*avg_grad_u_old - a21*avg_tensor_product_u_n)*n_plus + avg_p_old*n_plus, q); + } + phi_p.integrate_scatter(true, false, dst); + phi_m.integrate_scatter(true, false, dst); + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_old_p(data, true, 0), + phi_old_m(data, false, 0), + phi_int_p(data, true, 0), + phi_int_m(data, false, 0); + FEFaceEvaluation phi_old_press_p(data, true, 1), + phi_old_press_m(data, false, 1); + + /*--- We loop over the faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++ face) { + phi_old_p.reinit(face); + phi_old_p.gather_evaluate(src[0], true, true); + phi_old_m.reinit(face); + phi_old_m.gather_evaluate(src[0], true, true); + phi_int_p.reinit(face); + phi_int_p.gather_evaluate(src[1], true, true); + phi_int_m.reinit(face); + phi_int_m.gather_evaluate(src[1], true, true); + phi_old_press_p.reinit(face); + phi_old_press_p.gather_evaluate(src[2], true, false); + phi_old_press_m.reinit(face); + phi_old_press_m.gather_evaluate(src[2], true, false); + phi_p.reinit(face); + phi_m.reinit(face); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + + const auto& avg_grad_u_old = 0.5*(phi_old_p.get_gradient(q) + phi_old_m.get_gradient(q)); + const auto& avg_grad_u_int = 0.5*(phi_int_p.get_gradient(q) + phi_int_m.get_gradient(q)); + const auto& avg_tensor_product_u_n = 0.5*(outer_product(phi_old_p.get_value(q), phi_old_p.get_value(q)) + + outer_product(phi_old_m.get_value(q), phi_old_m.get_value(q))); + const auto& avg_tensor_product_u_n_gamma = 0.5*(outer_product(phi_int_p.get_value(q), phi_int_p.get_value(q)) + + outer_product(phi_int_m.get_value(q), phi_int_m.get_value(q))); + const auto& avg_p_old = 0.5*(phi_old_press_p.get_value(q) + phi_old_press_m.get_value(q)); + + phi_p.submit_value((a31/Re*avg_grad_u_old + a32/Re*avg_grad_u_int - + a31*avg_tensor_product_u_n - a32*avg_tensor_product_u_n_gamma)*n_plus - avg_p_old*n_plus, q); + phi_m.submit_value(-(a31/Re*avg_grad_u_old + a32/Re*avg_grad_u_int - + a31*avg_tensor_product_u_n - a32*avg_tensor_product_u_n_gamma)*n_plus + avg_p_old*n_plus, q); + } + phi_p.integrate_scatter(true, false, dst); + phi_m.integrate_scatter(true, false, dst); + } + } + } + + + // The followinf function assembles rhs boundary term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read already available quantities. Clearly on the boundary + the second argument has to be true. ---*/ + FEFaceEvaluation phi(data, true, 0), + phi_old(data, true, 0), + phi_old_extr(data, true, 0); + FEFaceEvaluation phi_old_press(data, true, 1); + + /*--- We loop over the faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_old.reinit(face); + phi_old.gather_evaluate(src[0], true, true); + phi_old_extr.reinit(face); + phi_old_extr.gather_evaluate(src[1], true, false); + phi_old_press.reinit(face); + phi_old_press.gather_evaluate(src[2], true, false); + phi.reinit(face); + + const auto boundary_id = data.get_boundary_id(face); /*--- Get the id in order to impose the proper boundary condition ---*/ + const auto coef_jump = (boundary_id == 1) ? 0.0 : C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + const double aux_coeff = (boundary_id == 1) ? 0.0 : 1.0; + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + + const auto& grad_u_old = phi_old.get_gradient(q); + const auto& tensor_product_u_n = outer_product(phi_old.get_value(q), phi_old_extr.get_value(q)); + const auto& p_old = phi_old_press.get_value(q); + const auto& point_vectorized = phi.quadrature_point(q); + auto u_int_m = Tensor<1, dim, VectorizedArray>(); + if(boundary_id == 0) { + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; /*--- The point returned by the 'quadrature_point' function is not an instance of Point + and so it is not ready to be directly used. We need to pay attention to the + vectorization ---*/ + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + for(unsigned int d = 0; d < dim; ++d) + u_int_m[d][v] = vel_boundary_inflow.value(point, d); + } + } + const auto tensor_product_u_int_m = outer_product(u_int_m, phi_old_extr.get_value(q)); + const auto lambda = (boundary_id == 1) ? 0.0 : std::abs(scalar_product(phi_old_extr.get_value(q), n_plus)); + + phi.submit_value((a21/Re*grad_u_old - a21*tensor_product_u_n)*n_plus - p_old*n_plus + + a22/Re*2.0*coef_jump*u_int_m - + aux_coeff*a22*tensor_product_u_int_m*n_plus + a22*lambda*u_int_m, q); + phi.submit_normal_derivative(-aux_coeff*theta_v*a22/Re*u_int_m, q); /*--- This is equivalent to multiply to the gradient + with outer product and use 'submit_gradient' ---*/ + } + phi.integrate_scatter(true, true, dst); + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi(data, true, 0), + phi_old(data, true, 0), + phi_int(data, true, 0), + phi_int_extr(data, true, 0); + FEFaceEvaluation phi_old_press(data, true, 1); + + /*--- We loop over the faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++ face) { + phi_old.reinit(face); + phi_old.gather_evaluate(src[0], true, true); + phi_int.reinit(face); + phi_int.gather_evaluate(src[1], true, true); + phi_old_press.reinit(face); + phi_old_press.gather_evaluate(src[2], true, false); + phi_int_extr.reinit(face); + phi_int_extr.gather_evaluate(src[3], true, false); + phi.reinit(face); + + const auto boundary_id = data.get_boundary_id(face); + const auto coef_jump = (boundary_id == 1) ? 0.0 : C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + const double aux_coeff = (boundary_id == 1) ? 0.0 : 1.0; + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + + const auto& grad_u_old = phi_old.get_gradient(q); + const auto& grad_u_int = phi_int.get_gradient(q); + const auto& tensor_product_u_n = outer_product(phi_old.get_value(q), phi_old.get_value(q)); + const auto& tensor_product_u_n_gamma = outer_product(phi_int.get_value(q), phi_int.get_value(q)); + const auto& p_old = phi_old_press.get_value(q); + const auto& point_vectorized = phi.quadrature_point(q); + auto u_m = Tensor<1, dim, VectorizedArray>(); + if(boundary_id == 0) { + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + for(unsigned int d = 0; d < dim; ++d) + u_m[d][v] = vel_boundary_inflow.value(point, d); + } + } + const auto tensor_product_u_m = outer_product(u_m, phi_int_extr.get_value(q)); + const auto lambda = (boundary_id == 1) ? 0.0 : std::abs(scalar_product(phi_int_extr.get_value(q), n_plus)); + + phi.submit_value((a31/Re*grad_u_old + a32/Re*grad_u_int - + a31*tensor_product_u_n - a32*tensor_product_u_n_gamma)*n_plus - p_old*n_plus + + a33/Re*2.0*coef_jump*u_m - + aux_coeff*a33*tensor_product_u_m*n_plus + a33*lambda*u_m, q); + phi.submit_normal_derivative(-aux_coeff*theta_v*a33/Re*u_m, q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + + + // Put together all the previous steps for velocity. This is done automatically by the loop function of 'MatrixFree' class + // + template + void NavierStokesProjectionOperator:: + vmult_rhs_velocity(Vec& dst, const std::vector& src) const { + for(unsigned int d = 0; d < src.size(); ++d) + src[d].update_ghost_values(); + + this->data->loop(&NavierStokesProjectionOperator::assemble_rhs_cell_term_velocity, + &NavierStokesProjectionOperator::assemble_rhs_face_term_velocity, + &NavierStokesProjectionOperator::assemble_rhs_boundary_term_velocity, + this, dst, src, true, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + } + + + // Now we focus on computing the rhs for the projection step for the pressure with the same ratio. + // The following function assembles rhs cell term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& cell_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. + The third parameter specifies that we want to use the second quadrature formula stored. ---*/ + FEEvaluation phi(data, 1, 1), + phi_old(data, 1, 1); + FEEvaluation phi_proj(data, 0, 1); + + const double coeff = (TR_BDF2_stage == 1) ? 1.0e6*gamma*dt*gamma*dt : 1.0e6*(1.0 - gamma)*dt*(1.0 - gamma)*dt; + + const double coeff_2 = (TR_BDF2_stage == 1) ? gamma*dt : (1.0 - gamma)*dt; + + /*--- We loop over cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi_proj.reinit(cell); + phi_proj.gather_evaluate(src[0], true, false); + phi_old.reinit(cell); + phi_old.gather_evaluate(src[1], true, false); + phi.reinit(cell); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_star_star = phi_proj.get_value(q); + const auto& p_old = phi_old.get_value(q); + + phi.submit_value(1.0/coeff*p_old, q); + phi.submit_gradient(1.0/coeff_2*u_star_star, q); + } + phi.integrate_scatter(true, true, dst); + } + } + + + // The following function assembles rhs face term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_face_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi_p(data, true, 1, 1), + phi_m(data, false, 1, 1); + FEFaceEvaluation phi_proj_p(data, true, 0, 1), + phi_proj_m(data, false, 0, 1); + + const double coeff = (TR_BDF2_stage == 1) ? 1.0/(gamma*dt) : 1.0/((1.0 - gamma)*dt); + + /*--- We loop over faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_proj_p.reinit(face); + phi_proj_p.gather_evaluate(src[0], true, false); + phi_proj_m.reinit(face); + phi_proj_m.gather_evaluate(src[0], true, false); + phi_p.reinit(face); + phi_m.reinit(face); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + const auto& avg_u_star_star = 0.5*(phi_proj_p.get_value(q) + phi_proj_m.get_value(q)); + + phi_p.submit_value(-coeff*scalar_product(avg_u_star_star, n_plus), q); + phi_m.submit_value(coeff*scalar_product(avg_u_star_star, n_plus), q); + } + phi_p.integrate_scatter(true, false, dst); + phi_m.integrate_scatter(true, false, dst); + } + } + + + // The following function assembles rhs boundary term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const std::vector& src, + const std::pair& face_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi(data, true, 1, 1); + FEFaceEvaluation phi_proj(data, true, 0, 1); + + const double coeff = (TR_BDF2_stage == 1) ? 1.0/(gamma*dt) : 1.0/((1.0 - gamma)*dt); + + /*--- We loop over faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_proj.reinit(face); + phi_proj.gather_evaluate(src[0], true, false); + phi.reinit(face); + + /*--- Now we loop over all the quadrature points to compute the integrals ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + + phi.submit_value(-coeff*scalar_product(phi_proj.get_value(q), n_plus), q); + } + phi.integrate_scatter(true, false, dst); + } + } + + + // Put together all the previous steps for pressure + // + template + void NavierStokesProjectionOperator:: + vmult_rhs_pressure(Vec& dst, const std::vector& src) const { + for(unsigned int d = 0; d < src.size(); ++d) + src[d].update_ghost_values(); + + this->data->loop(&NavierStokesProjectionOperator::assemble_rhs_cell_term_pressure, + &NavierStokesProjectionOperator::assemble_rhs_face_term_pressure, + &NavierStokesProjectionOperator::assemble_rhs_boundary_term_pressure, + this, dst, src, true, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + } + + + // Now we need to build the 'matrices', i.e. the bilinear forms. We start by + // assembling the cell term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read already available quantities. Moreover 'phi' in + this case serves for a bilinear form and so it will not used only to submit but also to read the src ---*/ + FEEvaluation phi(data, 0), + phi_old_extr(data, 0); + + /*--- We loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi.reinit(cell); + phi.gather_evaluate(src, true, true); + phi_old_extr.reinit(cell); + phi_old_extr.gather_evaluate(u_extr, true, false); + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_int = phi.get_value(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_n_gamma_ov_2 = phi_old_extr.get_value(q); + const auto& tensor_product_u_int = outer_product(u_int, u_n_gamma_ov_2); + + phi.submit_value(1.0/(gamma*dt)*u_int, q); + phi.submit_gradient(-a22*tensor_product_u_int + a22/Re*grad_u_int, q); + } + phi.integrate_scatter(true, true, dst); + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEEvaluation phi(data, 0), + phi_int_extr(data, 0); + + /*--- We loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi.reinit(cell); + phi.gather_evaluate(src, true, true); + phi_int_extr.reinit(cell); + phi_int_extr.gather_evaluate(u_extr, true, false); + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_curr = phi.get_value(q); + const auto& grad_u_curr = phi.get_gradient(q); + const auto& u_n1_int = phi_int_extr.get_value(q); + const auto& tensor_product_u_curr = outer_product(u_curr, u_n1_int); + + phi.submit_value(1.0/((1.0 - gamma)*dt)*u_curr, q); + phi.submit_gradient(-a33*tensor_product_u_curr + a33/Re*grad_u_curr, q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + + + // The following function assembles face term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_face_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_old_extr_p(data, true, 0), + phi_old_extr_m(data, false, 0); + + /*--- We loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_p.reinit(face); + phi_p.gather_evaluate(src, true, true); + phi_m.reinit(face); + phi_m.gather_evaluate(src, true, true); + phi_old_extr_p.reinit(face); + phi_old_extr_p.gather_evaluate(u_extr, true, false); + phi_old_extr_m.reinit(face); + phi_old_extr_m.gather_evaluate(u_extr, true, false); + + const auto coef_jump = C_u*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + + const auto& avg_grad_u_int = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_u_int = phi_p.get_value(q) - phi_m.get_value(q); + const auto& avg_tensor_product_u_int = 0.5*(outer_product(phi_p.get_value(q), phi_old_extr_p.get_value(q)) + + outer_product(phi_m.get_value(q), phi_old_extr_m.get_value(q))); + const auto lambda = std::max(std::abs(scalar_product(phi_old_extr_p.get_value(q), n_plus)), + std::abs(scalar_product(phi_old_extr_m.get_value(q), n_plus))); + + phi_p.submit_value(a22/Re*(-avg_grad_u_int*n_plus + coef_jump*jump_u_int) + + a22*avg_tensor_product_u_int*n_plus + 0.5*a22*lambda*jump_u_int, q); + phi_m.submit_value(-a22/Re*(-avg_grad_u_int*n_plus + coef_jump*jump_u_int) - + a22*avg_tensor_product_u_int*n_plus - 0.5*a22*lambda*jump_u_int, q); + phi_p.submit_normal_derivative(-theta_v*a22/Re*0.5*jump_u_int, q); + phi_m.submit_normal_derivative(-theta_v*a22/Re*0.5*jump_u_int, q); + } + phi_p.integrate_scatter(true, true, dst); + phi_m.integrate_scatter(true, true, dst); + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_extr_p(data, true, 0), + phi_extr_m(data, false, 0); + + /*--- We loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_p.reinit(face); + phi_p.gather_evaluate(src, true, true); + phi_m.reinit(face); + phi_m.gather_evaluate(src, true, true); + phi_extr_p.reinit(face); + phi_extr_p.gather_evaluate(u_extr, true, false); + phi_extr_m.reinit(face); + phi_extr_m.gather_evaluate(u_extr, true, false); + + const auto coef_jump = C_u*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + + const auto& avg_grad_u = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_u = phi_p.get_value(q) - phi_m.get_value(q); + const auto& avg_tensor_product_u = 0.5*(outer_product(phi_p.get_value(q), phi_extr_p.get_value(q)) + + outer_product(phi_m.get_value(q), phi_extr_m.get_value(q))); + const auto lambda = std::max(std::abs(scalar_product(phi_extr_p.get_value(q), n_plus)), + std::abs(scalar_product(phi_extr_m.get_value(q), n_plus))); + + phi_p.submit_value(a33/Re*(-avg_grad_u*n_plus + coef_jump*jump_u) + + a33*avg_tensor_product_u*n_plus + 0.5*a33*lambda*jump_u, q); + phi_m.submit_value(-a33/Re*(-avg_grad_u*n_plus + coef_jump*jump_u) - + a33*avg_tensor_product_u*n_plus - 0.5*a33*lambda*jump_u, q); + phi_p.submit_normal_derivative(-theta_v*a33/Re*0.5*jump_u, q); + phi_m.submit_normal_derivative(-theta_v*a33/Re*0.5*jump_u, q); + } + phi_p.integrate_scatter(true, true, dst); + phi_m.integrate_scatter(true, true, dst); + } + } + } + + + // The following function assembles boundary term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi(data, true, 0), + phi_old_extr(data, true, 0); + + /*--- We loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi.reinit(face); + phi.gather_evaluate(src, true, true); + phi_old_extr.reinit(face); + phi_old_extr.gather_evaluate(u_extr, true, false); + + const auto boundary_id = data.get_boundary_id(face); + const auto coef_jump = C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + + /*--- The application of the mirror principle is not so trivial because we have a Dirichlet condition + on a single component for the outflow; so we distinguish the two cases ---*/ + if(boundary_id != 1) { + const double coef_trasp = 0.0; + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_int = phi.get_value(q); + const auto& tensor_product_u_int = outer_product(phi.get_value(q), phi_old_extr.get_value(q)); + const auto& lambda = std::abs(scalar_product(phi_old_extr.get_value(q), n_plus)); + + phi.submit_value(a22/Re*(-grad_u_int*n_plus + 2.0*coef_jump*u_int) + + a22*coef_trasp*tensor_product_u_int*n_plus + a22*lambda*u_int, q); + phi.submit_normal_derivative(-theta_v*a22/Re*u_int, q); + } + phi.integrate_scatter(true, true, dst); + } + else { + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_int = phi.get_value(q); + const auto& lambda = std::abs(scalar_product(phi_old_extr.get_value(q), n_plus)); + + const auto& point_vectorized = phi.quadrature_point(q); + auto u_int_m = u_int; + auto grad_u_int_m = grad_u_int; + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + + u_int_m[1][v] = -u_int_m[1][v]; + + grad_u_int_m[0][0][v] = -grad_u_int_m[0][0][v]; + grad_u_int_m[0][1][v] = -grad_u_int_m[0][1][v]; + } + + phi.submit_value(a22/Re*(-(0.5*(grad_u_int + grad_u_int_m))*n_plus + coef_jump*(u_int - u_int_m)) + + a22*outer_product(0.5*(u_int + u_int_m), phi_old_extr.get_value(q))*n_plus + + a22*0.5*lambda*(u_int - u_int_m), q); + phi.submit_normal_derivative(-theta_v*a22/Re*(u_int - u_int_m), q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + else { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi(data, true, 0), + phi_extr(data, true, 0); + + /*--- We loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi.reinit(face); + phi.gather_evaluate(src, true, true); + phi_extr.reinit(face); + phi_extr.gather_evaluate(u_extr, true, false); + + const auto boundary_id = data.get_boundary_id(face); + const auto coef_jump = C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + + if(boundary_id != 1) { + const double coef_trasp = 0.0; + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u = phi.get_gradient(q); + const auto& u = phi.get_value(q); + const auto& tensor_product_u = outer_product(phi.get_value(q), phi_extr.get_value(q)); + const auto& lambda = std::abs(scalar_product(phi_extr.get_value(q), n_plus)); + + phi.submit_value(a33/Re*(-grad_u*n_plus + 2.0*coef_jump*u) + + a33*coef_trasp*tensor_product_u*n_plus + a33*lambda*u, q); + phi.submit_normal_derivative(-theta_v*a33/Re*u, q); + } + phi.integrate_scatter(true, true, dst); + } + else { + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u = phi.get_gradient(q); + const auto& u = phi.get_value(q); + const auto& lambda = std::abs(scalar_product(phi_extr.get_value(q), n_plus)); + + const auto& point_vectorized = phi.quadrature_point(q); + auto u_m = u; + auto grad_u_m = grad_u; + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + + u_m[1][v] = -u_m[1][v]; + + grad_u_m[0][0][v] = -grad_u_m[0][0][v]; + grad_u_m[0][1][v] = -grad_u_m[0][1][v]; + } + + phi.submit_value(a33/Re*(-(0.5*(grad_u + grad_u_m))*n_plus + coef_jump*(u - u_m)) + + a33*outer_product(0.5*(u + u_m), phi_extr.get_value(q))*n_plus + a33*0.5*lambda*(u - u_m), q); + phi.submit_normal_derivative(-theta_v*a33/Re*(u - u_m), q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + } + + + // Next, we focus on 'matrices' to compute the pressure. We first assemble cell term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEEvaluation phi(data, 1, 1); + + const double coeff = (TR_BDF2_stage == 1) ? 1.0e6*gamma*dt*gamma*dt : 1.0e6*(1.0 - gamma)*dt*(1.0 - gamma)*dt; + + /*--- Loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi.reinit(cell); + phi.gather_evaluate(src, true, true); + + /*--- Now we loop over all quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + phi.submit_gradient(phi.get_gradient(q), q); + phi.submit_value(1.0/coeff*phi.get_value(q), q); + } + + phi.integrate_scatter(true, true, dst); + } + } + + + // The following function assembles face term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_face_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEFaceEvaluation phi_p(data, true, 1, 1), + phi_m(data, false, 1, 1); + + /*--- Loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_p.reinit(face); + phi_p.gather_evaluate(src, true, true); + phi_m.reinit(face); + phi_m.gather_evaluate(src, true, true); + + const auto coef_jump = C_p*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + + const auto& avg_grad_pres = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_pres = phi_p.get_value(q) - phi_m.get_value(q); + + phi_p.submit_value(-scalar_product(avg_grad_pres, n_plus) + coef_jump*jump_pres, q); + phi_m.submit_value(scalar_product(avg_grad_pres, n_plus) - coef_jump*jump_pres, q); + phi_p.submit_gradient(-theta_p*0.5*jump_pres*n_plus, q); + phi_m.submit_gradient(-theta_p*0.5*jump_pres*n_plus, q); + } + phi_p.integrate_scatter(true, true, dst); + phi_m.integrate_scatter(true, true, dst); + } + } + + + // The following function assembles boundary term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& face_range) const { + FEFaceEvaluation phi(data, true, 1, 1); + + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi.reinit(face); + phi.gather_evaluate(src, true, true); + + const auto coef_jump = C_p*std::abs((phi.get_normal_vector(0)*phi.inverse_jacobian(0))[dim - 1]); + + const auto boundary_id = data.get_boundary_id(face); + + if(boundary_id == 1) { + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + + const auto& grad_pres = phi.get_gradient(q); + const auto& pres = phi.get_value(q); + + phi.submit_value(-scalar_product(grad_pres, n_plus) + coef_jump*pres , q); + phi.submit_normal_derivative(-theta_p*pres, q); + } + phi.integrate_scatter(true, true, dst); + } + } + } + + + // Before coding the 'apply_add' function, which is the one that will perform the loop, we focus on + // the linear system that arises to project the gradient of the pressure into the velocity space. + // The following function assembles rhs cell term for the projection of gradient of pressure. Since no + // integration by parts is performed, only a cell term contribution is present. + // + template + void NavierStokesProjectionOperator:: + assemble_rhs_cell_term_projection_grad_p(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const { + /*--- We first start by declaring the suitable instances to read already available quantities. ---*/ + FEEvaluation phi(data, 0); + FEEvaluation phi_pres(data, 1); + + /*--- Loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi_pres.reinit(cell); + phi_pres.gather_evaluate(src, false, true); + phi.reinit(cell); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) + phi.submit_value(phi_pres.get_gradient(q), q); + + phi.integrate_scatter(true, false, dst); + } + } + + + // Put together all the previous steps for porjection of pressure gradient. Here we loop only over cells + // + template + void NavierStokesProjectionOperator:: + vmult_grad_p_projection(Vec& dst, const Vec& src) const { + this->data->cell_loop(&NavierStokesProjectionOperator::assemble_rhs_cell_term_projection_grad_p, + this, dst, src, true); + } + + + // Assemble now cell term for the projection of gradient of pressure. This is nothing but a mass matrix + // + template + void NavierStokesProjectionOperator:: + assemble_cell_term_projection_grad_p(const MatrixFree& data, + Vec& dst, + const Vec& src, + const std::pair& cell_range) const { + FEEvaluation phi(data, 0); + + /*--- Loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi.reinit(cell); + phi.gather_evaluate(src, true, false); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) + phi.submit_value(phi.get_value(q), q); + + phi.integrate_scatter(true, false, dst); + } + } + + + // Put together all previous steps. This is the overriden function that effectively performs the + // matrix-vector multiplication. + // + template + void NavierStokesProjectionOperator:: + apply_add(Vec& dst, const Vec& src) const { + if(NS_stage == 1) { + this->data->loop(&NavierStokesProjectionOperator::assemble_cell_term_velocity, + &NavierStokesProjectionOperator::assemble_face_term_velocity, + &NavierStokesProjectionOperator::assemble_boundary_term_velocity, + this, dst, src, false, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + } + else if(NS_stage == 2) { + this->data->loop(&NavierStokesProjectionOperator::assemble_cell_term_pressure, + &NavierStokesProjectionOperator::assemble_face_term_pressure, + &NavierStokesProjectionOperator::assemble_boundary_term_pressure, + this, dst, src, false, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + } + else if(NS_stage == 3) { + this->data->cell_loop(&NavierStokesProjectionOperator::assemble_cell_term_projection_grad_p, + this, dst, src, false); /*--- Since we have only a cell term contribution, we use cell_loop ---*/ + } + else + Assert(false, ExcNotImplemented()); + } + + + // Finally, we focus on computing the diagonal for preconditioners and we start by assembling + // the diagonal cell term for the velocity. Since we do not have access to the entries of the matrix, + // in order to compute the element i, we test the matrix against a vector which is equal to 1 in position i and 0 elsewhere. + // This is why 'src' will result as unused. + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_cell_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& cell_range) const { + if(TR_BDF2_stage == 1) { + FEEvaluation phi(data, 0), + phi_old_extr(data, 0); + + AlignedVector>> diagonal(phi.dofs_per_component); + /*--- Build a vector of ones to be tested (here we will see the velocity as a whole vector, since + dof_handler_velocity is vectorial and so the dof values are vectors). ---*/ + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); + + /*--- Loop over cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi_old_extr.reinit(cell); + phi_old_extr.gather_evaluate(u_extr, true, false); + phi.reinit(cell); + + /*--- Loop over dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); /*--- Set all dofs to zero ---*/ + phi.submit_dof_value(tmp, i); /*--- Set dof i equal to one ---*/ + phi.evaluate(true, true); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_int = phi.get_value(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_n_gamma_ov_2 = phi_old_extr.get_value(q); + const auto& tensor_product_u_int = outer_product(u_int, u_n_gamma_ov_2); + + phi.submit_value(1.0/(gamma*dt)*u_int, q); + phi.submit_gradient(-a22*tensor_product_u_int + a22/Re*grad_u_int, q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + } + else { + FEEvaluation phi(data, 0), + phi_int_extr(data, 0); + + AlignedVector>> diagonal(phi.dofs_per_component); + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); + + /*--- Loop over cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi_int_extr.reinit(cell); + phi_int_extr.gather_evaluate(u_extr, true, false); + phi.reinit(cell); + + /*--- Loop over dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi.submit_dof_value(tmp, i); + phi.evaluate(true, true); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& u_curr = phi.get_value(q); + const auto& grad_u_curr = phi.get_gradient(q); + const auto& u_n1_int = phi_int_extr.get_value(q); + const auto& tensor_product_u_curr = outer_product(u_curr, u_n1_int); + + phi.submit_value(1.0/((1.0 - gamma)*dt)*u_curr, q); + phi.submit_gradient(-a33*tensor_product_u_curr + a33/Re*grad_u_curr, q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + } + } + + + // The following function assembles diagonal face term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_face_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_old_extr_p(data, true, 0), + phi_old_extr_m(data, false, 0); + + AssertDimension(phi_p.dofs_per_component, phi_m.dofs_per_component); /*--- We just assert for safety that dimension match, + in the sense that we have selected the proper + space ---*/ + AlignedVector>> diagonal_p(phi_p.dofs_per_component), + diagonal_m(phi_m.dofs_per_component); + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); /*--- We build the usal vector of ones that we will use as dof value ---*/ + + /*--- Now we loop over faces ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_old_extr_p.reinit(face); + phi_old_extr_p.gather_evaluate(u_extr, true, false); + phi_old_extr_m.reinit(face); + phi_old_extr_m.gather_evaluate(u_extr, true, false); + phi_p.reinit(face); + phi_m.reinit(face); + + const auto coef_jump = C_u*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Loop over dofs. We will set all equal to zero apart from the current one ---*/ + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi_p.dofs_per_component; ++j) { + phi_p.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi_m.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + } + phi_p.submit_dof_value(tmp, i); + phi_p.evaluate(true, true); + phi_m.submit_dof_value(tmp, i); + phi_m.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + const auto& avg_grad_u_int = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_u_int = phi_p.get_value(q) - phi_m.get_value(q); + const auto& avg_tensor_product_u_int = 0.5*(outer_product(phi_p.get_value(q), phi_old_extr_p.get_value(q)) + + outer_product(phi_m.get_value(q), phi_old_extr_m.get_value(q))); + const auto lambda = std::max(std::abs(scalar_product(phi_old_extr_p.get_value(q), n_plus)), + std::abs(scalar_product(phi_old_extr_m.get_value(q), n_plus))); + + phi_p.submit_value(a22/Re*(-avg_grad_u_int*n_plus + coef_jump*jump_u_int) + + a22*avg_tensor_product_u_int*n_plus + 0.5*a22*lambda*jump_u_int , q); + phi_m.submit_value(-a22/Re*(-avg_grad_u_int*n_plus + coef_jump*jump_u_int) - + a22*avg_tensor_product_u_int*n_plus - 0.5*a22*lambda*jump_u_int, q); + phi_p.submit_normal_derivative(-theta_v*0.5*a22/Re*jump_u_int, q); + phi_m.submit_normal_derivative(-theta_v*0.5*a22/Re*jump_u_int, q); + } + phi_p.integrate(true, true); + diagonal_p[i] = phi_p.get_dof_value(i); + phi_m.integrate(true, true); + diagonal_m[i] = phi_m.get_dof_value(i); + } + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + phi_p.submit_dof_value(diagonal_p[i], i); + phi_m.submit_dof_value(diagonal_m[i], i); + } + phi_p.distribute_local_to_global(dst); + phi_m.distribute_local_to_global(dst); + } + } + else { + FEFaceEvaluation phi_p(data, true, 0), + phi_m(data, false, 0), + phi_extr_p(data, true, 0), + phi_extr_m(data, false, 0); + + AssertDimension(phi_p.dofs_per_component, phi_m.dofs_per_component); + AlignedVector>> diagonal_p(phi_p.dofs_per_component), + diagonal_m(phi_m.dofs_per_component); + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); + + /*--- Now we loop over faces ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_extr_p.reinit(face); + phi_extr_p.gather_evaluate(u_extr, true, false); + phi_extr_m.reinit(face); + phi_extr_m.gather_evaluate(u_extr, true, false); + phi_p.reinit(face); + phi_m.reinit(face); + + const auto coef_jump = C_u*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Loop over dofs. We will set all equal to zero apart from the current one ---*/ + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi_p.dofs_per_component; ++j) { + phi_p.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi_m.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + } + phi_p.submit_dof_value(tmp, i); + phi_p.evaluate(true, true); + phi_m.submit_dof_value(tmp, i); + phi_m.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + const auto& avg_grad_u = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_u = phi_p.get_value(q) - phi_m.get_value(q); + const auto& avg_tensor_product_u = 0.5*(outer_product(phi_p.get_value(q), phi_extr_p.get_value(q)) + + outer_product(phi_m.get_value(q), phi_extr_m.get_value(q))); + const auto lambda = std::max(std::abs(scalar_product(phi_extr_p.get_value(q), n_plus)), + std::abs(scalar_product(phi_extr_m.get_value(q), n_plus))); + + phi_p.submit_value(a33/Re*(-avg_grad_u*n_plus + coef_jump*jump_u) + + a33*avg_tensor_product_u*n_plus + 0.5*a33*lambda*jump_u, q); + phi_m.submit_value(-a33/Re*(-avg_grad_u*n_plus + coef_jump*jump_u) - + a33*avg_tensor_product_u*n_plus - 0.5*a33*lambda*jump_u, q); + phi_p.submit_normal_derivative(-theta_v*0.5*a33/Re*jump_u, q); + phi_m.submit_normal_derivative(-theta_v*0.5*a33/Re*jump_u, q); + } + phi_p.integrate(true, true); + diagonal_p[i] = phi_p.get_dof_value(i); + phi_m.integrate(true, true); + diagonal_m[i] = phi_m.get_dof_value(i); + } + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + phi_p.submit_dof_value(diagonal_p[i], i); + phi_m.submit_dof_value(diagonal_m[i], i); + } + phi_p.distribute_local_to_global(dst); + phi_m.distribute_local_to_global(dst); + } + } + } + + + // The following function assembles boundary term for the velocity + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_boundary_term_velocity(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const { + if(TR_BDF2_stage == 1) { + FEFaceEvaluation phi(data, true, 0), + phi_old_extr(data, true, 0); + + AlignedVector>> diagonal(phi.dofs_per_component); + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); + + /*--- Loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_old_extr.reinit(face); + phi_old_extr.gather_evaluate(u_extr, true, false); + phi.reinit(face); + + const auto boundary_id = data.get_boundary_id(face); + const auto coef_jump = C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + + if(boundary_id != 1) { + const double coef_trasp = 0.0; + + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi.submit_dof_value(tmp, i); + phi.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_int = phi.get_value(q); + const auto& tensor_product_u_int = outer_product(phi.get_value(q), phi_old_extr.get_value(q)); + const auto& lambda = std::abs(scalar_product(phi_old_extr.get_value(q), n_plus)); + + phi.submit_value(a22/Re*(-grad_u_int*n_plus + 2.0*coef_jump*u_int) + + a22*coef_trasp*tensor_product_u_int*n_plus + a22*lambda*u_int, q); + phi.submit_normal_derivative(-theta_v*a22/Re*u_int, q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + else { + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi.submit_dof_value(tmp, i); + phi.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u_int = phi.get_gradient(q); + const auto& u_int = phi.get_value(q); + const auto& lambda = std::abs(scalar_product(phi_old_extr.get_value(q), n_plus)); + + const auto& point_vectorized = phi.quadrature_point(q); + auto u_int_m = u_int; + auto grad_u_int_m = grad_u_int; + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + + u_int_m[1][v] = -u_int_m[1][v]; + + grad_u_int_m[0][0][v] = -grad_u_int_m[0][0][v]; + grad_u_int_m[0][1][v] = -grad_u_int_m[0][1][v]; + } + + phi.submit_value(a22/Re*(-(0.5*(grad_u_int + grad_u_int_m))*n_plus + coef_jump*(u_int - u_int_m)) + + a22*outer_product(0.5*(u_int + u_int_m), phi_old_extr.get_value(q))*n_plus + + a22*0.5*lambda*(u_int - u_int_m), q); + phi.submit_normal_derivative(-theta_v*a22/Re*(u_int - u_int_m), q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + } + } + else { + FEFaceEvaluation phi(data, true, 0), + phi_extr(data, true, 0); + + AlignedVector>> diagonal(phi.dofs_per_component); + Tensor<1, dim, VectorizedArray> tmp; + for(unsigned int d = 0; d < dim; ++d) + tmp[d] = make_vectorized_array(1.0); + + /*--- Loop over all faces in the range ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_extr.reinit(face); + phi_extr.gather_evaluate(u_extr, true, false); + phi.reinit(face); + + const auto boundary_id = data.get_boundary_id(face); + const auto coef_jump = C_u*std::abs((phi.get_normal_vector(0) * phi.inverse_jacobian(0))[dim - 1]); + + if(boundary_id != 1) { + const double coef_trasp = 0.0; + + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi.submit_dof_value(tmp, i); + phi.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u = phi.get_gradient(q); + const auto& u = phi.get_value(q); + const auto& tensor_product_u = outer_product(phi.get_value(q), phi_extr.get_value(q)); + const auto& lambda = std::abs(scalar_product(phi_extr.get_value(q), n_plus)); + + phi.submit_value(a33/Re*(-grad_u*n_plus + 2.0*coef_jump*u) + + a33*coef_trasp*tensor_product_u*n_plus + a33*lambda*u, q); + phi.submit_normal_derivative(-theta_v*a33/Re*u, q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + else { + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(Tensor<1, dim, VectorizedArray>(), j); + phi.submit_dof_value(tmp, i); + phi.evaluate(true, true); + + /*--- Loop over quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + const auto& grad_u = phi.get_gradient(q); + const auto& u = phi.get_value(q); + const auto& lambda = std::abs(scalar_product(phi_extr.get_value(q), n_plus)); + + const auto& point_vectorized = phi.quadrature_point(q); + auto u_m = u; + auto grad_u_m = grad_u; + for(unsigned int v = 0; v < VectorizedArray::size(); ++v) { + Point point; + for(unsigned int d = 0; d < dim; ++d) + point[d] = point_vectorized[d][v]; + + u_m[1][v] = -u_m[1][v]; + + grad_u_m[0][0][v] = -grad_u_m[0][0][v]; + grad_u_m[0][1][v] = -grad_u_m[0][1][v]; + } + + phi.submit_value(a33/Re*(-(0.5*(grad_u + grad_u_m))*n_plus + coef_jump*(u - u_m)) + + a33*outer_product(0.5*(u + u_m), phi_extr.get_value(q))*n_plus + + a33*0.5*lambda*(u - u_m), q); + phi.submit_normal_derivative(-theta_v*a33/Re*(u - u_m), q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + } + } + } + + + // Now we consider the pressure related bilinear forms. We first assemble diagonal cell term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_cell_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& cell_range) const { + FEEvaluation phi(data, 1, 1); + + AlignedVector> diagonal(phi.dofs_per_component); /*--- Here we are using dofs_per_component but + it coincides with dofs_per_cell since it is + scalar finite element space ---*/ + + const double coeff = (TR_BDF2_stage == 1) ? 1e6*gamma*dt*gamma*dt : 1e6*(1.0 - gamma)*dt*(1.0 - gamma)*dt; + + /*--- Loop over all cells in the range ---*/ + for(unsigned int cell = cell_range.first; cell < cell_range.second; ++cell) { + phi.reinit(cell); + + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(VectorizedArray(), j); /*--- We set all dofs to zero ---*/ + phi.submit_dof_value(make_vectorized_array(1.0), i); /*--- Now we set the current one to 1; since it is scalar, + we can directly use 'make_vectorized_array' without + relying on 'Tensor' ---*/ + phi.evaluate(true, true); + + /*--- Loop over quadrature points ---*/ + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + phi.submit_value(1.0/coeff*phi.get_value(q), q); + phi.submit_gradient(phi.get_gradient(q), q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + + phi.distribute_local_to_global(dst); + } + } + + + // The following function assembles diagonal face term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_face_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const { + FEFaceEvaluation phi_p(data, true, 1, 1), + phi_m(data, false, 1, 1); + + AssertDimension(phi_p.dofs_per_component, phi_m.dofs_per_component); + AlignedVector> diagonal_p(phi_p.dofs_per_component), + diagonal_m(phi_m.dofs_per_component); /*--- Again, we just assert for safety that dimension + match, in the sense that we have selected + the proper space ---*/ + + /*--- Loop over all faces ---*/ + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi_p.reinit(face); + phi_m.reinit(face); + + const auto coef_jump = C_p*0.5*(std::abs((phi_p.get_normal_vector(0)*phi_p.inverse_jacobian(0))[dim - 1]) + + std::abs((phi_m.get_normal_vector(0)*phi_m.inverse_jacobian(0))[dim - 1])); + + /*--- Loop over all dofs ---*/ + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi_p.dofs_per_component; ++j) { + phi_p.submit_dof_value(VectorizedArray(), j); + phi_m.submit_dof_value(VectorizedArray(), j); + } + phi_p.submit_dof_value(make_vectorized_array(1.0), i); + phi_m.submit_dof_value(make_vectorized_array(1.0), i); + phi_p.evaluate(true, true); + phi_m.evaluate(true, true); + + /*--- Loop over all quadrature points to compute the integral ---*/ + for(unsigned int q = 0; q < phi_p.n_q_points; ++q) { + const auto& n_plus = phi_p.get_normal_vector(q); + + const auto& avg_grad_pres = 0.5*(phi_p.get_gradient(q) + phi_m.get_gradient(q)); + const auto& jump_pres = phi_p.get_value(q) - phi_m.get_value(q); + + phi_p.submit_value(-scalar_product(avg_grad_pres, n_plus) + coef_jump*jump_pres, q); + phi_m.submit_value(scalar_product(avg_grad_pres, n_plus) - coef_jump*jump_pres, q); + phi_p.submit_gradient(-theta_p*0.5*jump_pres*n_plus, q); + phi_m.submit_gradient(-theta_p*0.5*jump_pres*n_plus, q); + } + phi_p.integrate(true, true); + diagonal_p[i] = phi_p.get_dof_value(i); + phi_m.integrate(true, true); + diagonal_m[i] = phi_m.get_dof_value(i); + } + for(unsigned int i = 0; i < phi_p.dofs_per_component; ++i) { + phi_p.submit_dof_value(diagonal_p[i], i); + phi_m.submit_dof_value(diagonal_m[i], i); + } + phi_p.distribute_local_to_global(dst); + phi_m.distribute_local_to_global(dst); + } + } + + + // Eventually, we assemble diagonal boundary term for the pressure + // + template + void NavierStokesProjectionOperator:: + assemble_diagonal_boundary_term_pressure(const MatrixFree& data, + Vec& dst, + const unsigned int& src, + const std::pair& face_range) const { + FEFaceEvaluation phi(data, true, 1, 1); + + AlignedVector> diagonal(phi.dofs_per_component); + + for(unsigned int face = face_range.first; face < face_range.second; ++face) { + phi.reinit(face); + + const auto coef_jump = C_p*std::abs((phi.get_normal_vector(0)*phi.inverse_jacobian(0))[dim - 1]); + + const auto boundary_id = data.get_boundary_id(face); + + if(boundary_id == 1) { + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) { + for(unsigned int j = 0; j < phi.dofs_per_component; ++j) + phi.submit_dof_value(VectorizedArray(), j); + phi.submit_dof_value(make_vectorized_array(1.0), i); + phi.evaluate(true, true); + + for(unsigned int q = 0; q < phi.n_q_points; ++q) { + const auto& n_plus = phi.get_normal_vector(q); + + const auto& grad_pres = phi.get_gradient(q); + const auto& pres = phi.get_value(q); + + phi.submit_value(-scalar_product(grad_pres, n_plus) + 2.0*coef_jump*pres , q); + phi.submit_normal_derivative(-theta_p*pres, q); + } + phi.integrate(true, true); + diagonal[i] = phi.get_dof_value(i); + } + for(unsigned int i = 0; i < phi.dofs_per_component; ++i) + phi.submit_dof_value(diagonal[i], i); + phi.distribute_local_to_global(dst); + } + } + } + + + // Put together all previous steps. We create a dummy auxliary vector that serves for the src input argument in + // the previous functions that as we have seen before is unused. Then everything is done by the 'loop' function + // and it is saved in the field 'inverse_diagonal_entries' already present in the base class. Anyway since there is + // only one field, we need to resize properly depending on whether we are considering the velocity or the pressure. + // + template + void NavierStokesProjectionOperator:: + compute_diagonal() { + Assert(NS_stage == 1 || NS_stage == 2, ExcInternalError()); + if(NS_stage == 1) { + this->inverse_diagonal_entries.reset(new DiagonalMatrix()); + auto& inverse_diagonal = this->inverse_diagonal_entries->get_vector(); + this->data->initialize_dof_vector(inverse_diagonal, 0); + const unsigned int dummy = 0; + + this->data->loop(&NavierStokesProjectionOperator::assemble_diagonal_cell_term_velocity, + &NavierStokesProjectionOperator::assemble_diagonal_face_term_velocity, + &NavierStokesProjectionOperator::assemble_diagonal_boundary_term_velocity, + this, inverse_diagonal, dummy, false, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + + for(unsigned int i = 0; i < inverse_diagonal.local_size(); ++i) { + Assert(inverse_diagonal.local_element(i) != 0.0, + ExcMessage("No diagonal entry in a definite operator should be zero")); + inverse_diagonal.local_element(i) = 1.0/inverse_diagonal.local_element(i); + } + } + else if(NS_stage == 2) { + this->inverse_diagonal_entries.reset(new DiagonalMatrix()); + auto& inverse_diagonal = this->inverse_diagonal_entries->get_vector(); + this->data->initialize_dof_vector(inverse_diagonal, 1); + const unsigned int dummy = 0; + + this->data->loop(&NavierStokesProjectionOperator::assemble_diagonal_cell_term_pressure, + &NavierStokesProjectionOperator::assemble_diagonal_face_term_pressure, + &NavierStokesProjectionOperator::assemble_diagonal_boundary_term_pressure, + this, inverse_diagonal, dummy, false, + MatrixFree::DataAccessOnFaces::unspecified, + MatrixFree::DataAccessOnFaces::unspecified); + + for(unsigned int i = 0; i < inverse_diagonal.local_size(); ++i) { + Assert(inverse_diagonal.local_element(i) != 0.0, + ExcMessage("No diagonal entry in a definite operator should be zero")); + inverse_diagonal.local_element(i) = 1.0/inverse_diagonal.local_element(i); + } + } + } + + + // @sect{The NavierStokesProjection class} + + // Now we are ready for the main class of the program. It implements the calls to the various steps + // of the projection method for Navier-Stokes equations. + // + template + class NavierStokesProjection { + public: + NavierStokesProjection(RunTimeParameters::Data_Storage& data); + + void run(const bool verbose = false, const unsigned int output_interval = 10); + + protected: + const double t_0; + const double T; + const double gamma; //--- TR-BDF2 parameter + unsigned int TR_BDF2_stage; //--- Flag to check at which current stage of TR-BDF2 are + const double Re; + double dt; + + EquationData::Velocity vel_init; + EquationData::Pressure pres_init; /*--- Instance of 'Velocity' and 'Pressure' classes to initialize. ---*/ + + parallel::distributed::Triangulation triangulation; + + /*--- Finite Element spaces ---*/ + FESystem fe_velocity; + FESystem fe_pressure; + + /*--- Handler for dofs ---*/ + DoFHandler dof_handler_velocity; + DoFHandler dof_handler_pressure; + + /*--- Quadrature formulas for velocity and pressure, respectively ---*/ + QGauss quadrature_pressure; + QGauss quadrature_velocity; + + /*--- Now we define all the vectors for the solution. We start from the pressure + with p^n, p^(n+gamma) and a vector for rhs ---*/ + LinearAlgebra::distributed::Vector pres_n; + LinearAlgebra::distributed::Vector pres_int; + LinearAlgebra::distributed::Vector rhs_p; + + /*--- Next, we move to the velocity, with u^n, u^(n-1), u^(n+gamma/2), + u^(n+gamma) and other two auxiliary vectors as well as the rhs ---*/ + LinearAlgebra::distributed::Vector u_n; + LinearAlgebra::distributed::Vector u_n_minus_1; + LinearAlgebra::distributed::Vector u_extr; + LinearAlgebra::distributed::Vector u_n_gamma; + LinearAlgebra::distributed::Vector u_star; + LinearAlgebra::distributed::Vector u_tmp; + LinearAlgebra::distributed::Vector rhs_u; + LinearAlgebra::distributed::Vector grad_pres_int; + + Vector Linfty_error_per_cell_vel; + + DeclException2(ExcInvalidTimeStep, + double, + double, + << " The time step " << arg1 << " is out of range." + << std::endl + << " The permitted range is (0," << arg2 << "]"); + + void create_triangulation(const unsigned int n_refines); + + void setup_dofs(); + + void initialize(); + + void interpolate_velocity(); + + void diffusion_step(); + + void projection_step(); + + void project_grad(const unsigned int flag); + + double get_maximal_velocity(); + + double get_maximal_difference(); + + void output_results(const unsigned int step); + + void refine_mesh(); + + void interpolate_max_res(const unsigned int level); + + void save_max_res(); + + private: + void compute_lift_and_drag(); + + /*--- Technical member to handle the various steps ---*/ + std::shared_ptr> matrix_free_storage; + + /*--- Now we need an instance of the class implemented before with the weak form ---*/ + NavierStokesProjectionOperator, double> navier_stokes_matrix; + + /*--- This is an instance for geometric multigrid preconditioner ---*/ + MGLevelObject, float>> mg_matrices; + + /*--- Here we define two 'AffineConstraints' instance, one for each finite element space. + This is just a technical issue, due to MatrixFree requirements. In general + this class is used to impose boundary conditions (or any kind of constraints), but in this case, since + we are using a weak imposition of bcs, everything is already in the weak forms and so these instances + will be default constructed ---*/ + AffineConstraints constraints_velocity, + constraints_pressure; + + /*--- Now a bunch of variables handled by 'ParamHandler' introduced at the beginning of the code ---*/ + unsigned int max_its; + double eps; + + unsigned int max_loc_refinements; + unsigned int min_loc_refinements; + unsigned int refinement_iterations; + + std::string saving_dir; + + /*--- Finally, some output related streams ---*/ + ConditionalOStream pcout; + + std::ofstream time_out; + ConditionalOStream ptime_out; + TimerOutput time_table; + + std::ofstream output_n_dofs_velocity; + std::ofstream output_n_dofs_pressure; + + std::ofstream output_lift; + std::ofstream output_drag; + }; + + + // In the constructor, we just read all the data from the + // Data_Storage object that is passed as an argument, verify that + // the data we read are reasonable and, finally, create the triangulation and + // load the initial data. + // + template + NavierStokesProjection::NavierStokesProjection(RunTimeParameters::Data_Storage& data): + t_0(data.initial_time), + T(data.final_time), + gamma(2.0 - std::sqrt(2.0)), //--- Save also in the NavierStokes class the TR-BDF2 parameter value + TR_BDF2_stage(1), //--- Initialize the flag for the TR_BDF2 stage + Re(data.Reynolds), + dt(data.dt), + vel_init(data.initial_time), + pres_init(data.initial_time), + triangulation(MPI_COMM_WORLD, parallel::distributed::Triangulation::limit_level_difference_at_vertices, + parallel::distributed::Triangulation::construct_multigrid_hierarchy), + fe_velocity(FE_DGQ(EquationData::degree_p + 1), dim), + fe_pressure(FE_DGQ(EquationData::degree_p), 1), + dof_handler_velocity(triangulation), + dof_handler_pressure(triangulation), + quadrature_pressure(EquationData::degree_p + 1), + quadrature_velocity(EquationData::degree_p + 2), + navier_stokes_matrix(data), + max_its(data.max_iterations), + eps(data.eps), + max_loc_refinements(data.max_loc_refinements), + min_loc_refinements(data.min_loc_refinements), + refinement_iterations(data.refinement_iterations), + saving_dir(data.dir), + pcout(std::cout, Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0), + time_out("./" + data.dir + "/time_analysis_" + + Utilities::int_to_string(Utilities::MPI::n_mpi_processes(MPI_COMM_WORLD)) + "proc.dat"), + ptime_out(time_out, Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0), + time_table(ptime_out, TimerOutput::summary, TimerOutput::cpu_and_wall_times), + output_n_dofs_velocity("./" + data.dir + "/n_dofs_velocity.dat", std::ofstream::out), + output_n_dofs_pressure("./" + data.dir + "/n_dofs_pressure.dat", std::ofstream::out), + output_lift("./" + data.dir + "/lift.dat", std::ofstream::out), + output_drag("./" + data.dir + "/drag.dat", std::ofstream::out) { + if(EquationData::degree_p < 1) { + pcout + << " WARNING: The chosen pair of finite element spaces is not stable." + << std::endl + << " The obtained results will be nonsense" << std::endl; + } + + AssertThrow(!((dt <= 0.0) || (dt > 0.5*T)), ExcInvalidTimeStep(dt, 0.5*T)); + + matrix_free_storage = std::make_shared>(); + + create_triangulation(data.n_refines); + setup_dofs(); + initialize(); + } + + + // The method that creates the triangulation and refines it the needed number + // of times. + // + template + void NavierStokesProjection::create_triangulation(const unsigned int n_refines) { + TimerOutput::Scope t(time_table, "Create triangulation"); + + GridGenerator::plate_with_a_hole(triangulation, 0.5, 1.0, 1.0, 1.1, 1.0, 19.0, Point<2>(2.0, 2.0), 0, 1, 1.0, 2, true); + /*--- We strongly advice to check the documentation to verify the meaning of all input parameters. ---*/ + + pcout << "Number of refines = " << n_refines << std::endl; + triangulation.refine_global(n_refines); + } + + + // After creating the triangulation, it creates the mesh dependent + // data, i.e. it distributes degrees of freedom, and + // initializes the vectors that we will use. + // + template + void NavierStokesProjection::setup_dofs() { + pcout << "Number of active cells: " << triangulation.n_global_active_cells() << std::endl; + pcout << "Number of levels: " << triangulation.n_global_levels() << std::endl; + + /*--- Distribute dofs and prepare for multigrid ---*/ + dof_handler_velocity.distribute_dofs(fe_velocity); + dof_handler_pressure.distribute_dofs(fe_pressure); + + pcout << "dim (X_h) = " << dof_handler_velocity.n_dofs() + << std::endl + << "dim (M_h) = " << dof_handler_pressure.n_dofs() + << std::endl + << "Re = " << Re << std::endl + << std::endl; + + if(Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0) { + output_n_dofs_velocity << dof_handler_velocity.n_dofs() << std::endl; + output_n_dofs_pressure << dof_handler_pressure.n_dofs() << std::endl; + } + + typename MatrixFree::AdditionalData additional_data; + additional_data.mapping_update_flags = (update_gradients | update_JxW_values | + update_quadrature_points | update_values); + additional_data.mapping_update_flags_inner_faces = (update_gradients | update_JxW_values | update_quadrature_points | + update_normal_vectors | update_values); + additional_data.mapping_update_flags_boundary_faces = (update_gradients | update_JxW_values | update_quadrature_points | + update_normal_vectors | update_values); + additional_data.tasks_parallel_scheme = MatrixFree::AdditionalData::none; + + std::vector*> dof_handlers; /*--- Vector of dof_handlers to feed the 'MatrixFree'. Here the order + counts and enters into the game as parameter of FEEvaluation and + FEFaceEvaluation in the previous class ---*/ + dof_handlers.push_back(&dof_handler_velocity); + dof_handlers.push_back(&dof_handler_pressure); + + constraints_velocity.clear(); + constraints_velocity.close(); + constraints_pressure.clear(); + constraints_pressure.close(); + std::vector*> constraints; + constraints.push_back(&constraints_velocity); + constraints.push_back(&constraints_pressure); + + std::vector> quadratures; /*--- We cannot directly use 'quadrature_velocity' and 'quadrature_pressure', + because the 'MatrixFree' structure wants a quadrature formula for 1D + (this is way the template parameter of the previous class was called 'n_q_points_1d_p' + and 'n_q_points_1d_v' and the reason of '1' as QGauss template parameter). ---*/ + quadratures.push_back(QGauss<1>(EquationData::degree_p + 2)); + quadratures.push_back(QGauss<1>(EquationData::degree_p + 1)); + + /*--- Initialize the matrix-free structure and size properly the vectors. Here again the + second input argument of the 'initialize_dof_vector' method depends on the order of 'dof_handlers' ---*/ + matrix_free_storage->reinit(dof_handlers, constraints, quadratures, additional_data); + matrix_free_storage->initialize_dof_vector(u_star, 0); + matrix_free_storage->initialize_dof_vector(rhs_u, 0); + matrix_free_storage->initialize_dof_vector(u_n, 0); + matrix_free_storage->initialize_dof_vector(u_extr, 0); + matrix_free_storage->initialize_dof_vector(u_n_minus_1, 0); + matrix_free_storage->initialize_dof_vector(u_n_gamma, 0); + matrix_free_storage->initialize_dof_vector(u_tmp, 0); + matrix_free_storage->initialize_dof_vector(grad_pres_int, 0); + + matrix_free_storage->initialize_dof_vector(pres_int, 1); + matrix_free_storage->initialize_dof_vector(pres_n, 1); + matrix_free_storage->initialize_dof_vector(rhs_p, 1); + + /*--- Initialize the multigrid structure. We dedicate ad hoc 'dof_handlers_mg' and 'constraints_mg' because + we use float as type. Moreover we can initialize already with the index of the finite element of the pressure; + anyway we need by requirement to declare also structures for the velocity for coherence (basically because + the index of finite element space has to be the same, so the pressure has to be the second).---*/ + mg_matrices.clear_elements(); + dof_handler_velocity.distribute_mg_dofs(); + dof_handler_pressure.distribute_mg_dofs(); + + const unsigned int nlevels = triangulation.n_global_levels(); + mg_matrices.resize(0, nlevels - 1); + for(unsigned int level = 0; level < nlevels; ++level) { + typename MatrixFree::AdditionalData additional_data_mg; + additional_data_mg.tasks_parallel_scheme = MatrixFree::AdditionalData::none; + additional_data_mg.mapping_update_flags = (update_gradients | update_JxW_values); + additional_data_mg.mapping_update_flags_inner_faces = (update_gradients | update_JxW_values); + additional_data_mg.mapping_update_flags_boundary_faces = (update_gradients | update_JxW_values); + additional_data_mg.mg_level = level; + + std::vector*> dof_handlers_mg; + dof_handlers_mg.push_back(&dof_handler_velocity); + dof_handlers_mg.push_back(&dof_handler_pressure); + std::vector*> constraints_mg; + AffineConstraints constraints_velocity_mg; + constraints_velocity_mg.clear(); + constraints_velocity_mg.close(); + constraints_mg.push_back(&constraints_velocity_mg); + AffineConstraints constraints_pressure_mg; + constraints_pressure_mg.clear(); + constraints_pressure_mg.close(); + constraints_mg.push_back(&constraints_pressure_mg); + + std::shared_ptr> mg_mf_storage_level(new MatrixFree()); + mg_mf_storage_level->reinit(dof_handlers_mg, constraints_mg, quadratures, additional_data_mg); + const std::vector tmp = {1}; + mg_matrices[level].initialize(mg_mf_storage_level, tmp, tmp); + mg_matrices[level].set_dt(dt); + mg_matrices[level].set_NS_stage(2); + } + + Linfty_error_per_cell_vel.reinit(triangulation.n_active_cells()); + } + + + // This method loads the initial data. It simply uses the class Pressure instance for the pressure + // and the class Velocity instance for the velocity. + // + template + void NavierStokesProjection::initialize() { + TimerOutput::Scope t(time_table, "Initialize pressure and velocity"); + + VectorTools::interpolate(dof_handler_pressure, pres_init, pres_n); + + VectorTools::interpolate(dof_handler_velocity, vel_init, u_n_minus_1); + VectorTools::interpolate(dof_handler_velocity, vel_init, u_n); + } + + + // This function computes the extrapolated velocity to be used in the momentum predictor + // + template + void NavierStokesProjection::interpolate_velocity() { + TimerOutput::Scope t(time_table, "Interpolate velocity"); + + //--- TR-BDF2 first step + if(TR_BDF2_stage == 1) { + u_extr.equ(1.0 + gamma/(2.0*(1.0 - gamma)), u_n); + u_tmp.equ(gamma/(2.0*(1.0 - gamma)), u_n_minus_1); + u_extr -= u_tmp; + } + //--- TR-BDF2 second step + else { + u_extr.equ(1.0 + (1.0 - gamma)/gamma, u_n_gamma); + u_tmp.equ((1.0 - gamma)/gamma, u_n); + u_extr -= u_tmp; + } + } + + + // We are finally ready to solve the diffusion step. + // + template + void NavierStokesProjection::diffusion_step() { + TimerOutput::Scope t(time_table, "Diffusion step"); + + /*--- We first speicify that we want to deal with velocity dof_handler (index 0, since it is the first one + in the 'dof_handlers' vector) ---*/ + const std::vector tmp = {0}; + navier_stokes_matrix.initialize(matrix_free_storage, tmp, tmp); + + /*--- Next, we specify at we are at stage 1, namely the diffusion step ---*/ + navier_stokes_matrix.set_NS_stage(1); + + /*--- Now, we compute the right-hand side and we set the convective velocity. The necessity of 'set_u_extr' is + that this quantity is required in the bilinear forms and we can't use a vector of src like on the right-hand side, + so it has to be available ---*/ + if(TR_BDF2_stage == 1) { + navier_stokes_matrix.vmult_rhs_velocity(rhs_u, {u_n, u_extr, pres_n}); + navier_stokes_matrix.set_u_extr(u_extr); + u_star = u_extr; + } + else { + navier_stokes_matrix.vmult_rhs_velocity(rhs_u, {u_n, u_n_gamma, pres_int, u_extr}); + navier_stokes_matrix.set_u_extr(u_extr); + u_star = u_extr; + } + + /*--- Build the linear solver; in this case we specifiy the maximum number of iterations and residual ---*/ + SolverControl solver_control(max_its, eps*rhs_u.l2_norm()); + SolverGMRES> gmres(solver_control); + + /*--- Build a Jacobi preconditioner and solve ---*/ + PreconditionJacobi, + double>> preconditioner; + navier_stokes_matrix.compute_diagonal(); + preconditioner.initialize(navier_stokes_matrix); + + gmres.solve(navier_stokes_matrix, u_star, rhs_u, preconditioner); + } + + + // Next, we solve the projection step. + // + template + void NavierStokesProjection::projection_step() { + TimerOutput::Scope t(time_table, "Projection step pressure"); + + /*--- We start in the same way of 'diffusion_step': we first reinitialize with the index of FE space, + we specify that this is the second stage and we compute the right-hand side ---*/ + const std::vector tmp = {1}; + navier_stokes_matrix.initialize(matrix_free_storage, tmp, tmp); + + navier_stokes_matrix.set_NS_stage(2); + + if(TR_BDF2_stage == 1) + navier_stokes_matrix.vmult_rhs_pressure(rhs_p, {u_star, pres_n}); + else + navier_stokes_matrix.vmult_rhs_pressure(rhs_p, {u_star, pres_int}); + + /*--- Build the linear solver (Conjugate Gradient in this case) ---*/ + SolverControl solver_control(max_its, eps*rhs_p.l2_norm()); + SolverCG> cg(solver_control); + + /*--- Build the preconditioner (as in step-37) ---*/ + MGTransferMatrixFree mg_transfer; + mg_transfer.build(dof_handler_pressure); + + using SmootherType = PreconditionChebyshev, + float>, + LinearAlgebra::distributed::Vector>; + mg::SmootherRelaxation> mg_smoother; + MGLevelObject smoother_data; + smoother_data.resize(0, triangulation.n_global_levels() - 1); + for(unsigned int level = 0; level < triangulation.n_global_levels(); ++level) { + if(level > 0) { + smoother_data[level].smoothing_range = 15.0; + smoother_data[level].degree = 3; + smoother_data[level].eig_cg_n_iterations = 10; + } + else { + smoother_data[0].smoothing_range = 2e-2; + smoother_data[0].degree = numbers::invalid_unsigned_int; + smoother_data[0].eig_cg_n_iterations = mg_matrices[0].m(); + } + mg_matrices[level].compute_diagonal(); + smoother_data[level].preconditioner = mg_matrices[level].get_matrix_diagonal_inverse(); + } + mg_smoother.initialize(mg_matrices, smoother_data); + + PreconditionIdentity identity; + SolverCG> cg_mg(solver_control); + MGCoarseGridIterativeSolver, + SolverCG>, + NavierStokesProjectionOperator, + float>, + PreconditionIdentity> mg_coarse(cg_mg, mg_matrices[0], identity); + + mg::Matrix> mg_matrix(mg_matrices); + + Multigrid> mg(mg_matrix, mg_coarse, mg_transfer, mg_smoother, mg_smoother); + + PreconditionMG, + MGTransferMatrixFree> preconditioner(dof_handler_pressure, mg, mg_transfer); + + /*--- Solve the linear system ---*/ + if(TR_BDF2_stage == 1) { + pres_int = pres_n; + cg.solve(navier_stokes_matrix, pres_int, rhs_p, preconditioner); + } + else { + pres_n = pres_int; + cg.solve(navier_stokes_matrix, pres_n, rhs_p, preconditioner); + } + } + + + // This implements the projection step for the gradient of pressure + // + template + void NavierStokesProjection::project_grad(const unsigned int flag) { + TimerOutput::Scope t(time_table, "Gradient of pressure projection"); + + /*--- The input parameter flag is used just to specify where we want to save the result ---*/ + AssertIndexRange(flag, 3); + Assert(flag > 0, ExcInternalError()); + + /*--- We need to select the dof handler related to the velocity since the result lives there ---*/ + const std::vector tmp = {0}; + navier_stokes_matrix.initialize(matrix_free_storage, tmp, tmp); + + if(flag == 1) + navier_stokes_matrix.vmult_grad_p_projection(rhs_u, pres_n); + else if(flag == 2) + navier_stokes_matrix.vmult_grad_p_projection(rhs_u, pres_int); + + /*--- We conventionally decide that the this corresponds to third stage ---*/ + navier_stokes_matrix.set_NS_stage(3); + + /*--- Solve the system ---*/ + SolverControl solver_control(max_its, 1e-12*rhs_u.l2_norm()); + SolverCG> cg(solver_control); + cg.solve(navier_stokes_matrix, u_tmp, rhs_u, PreconditionIdentity()); + } + + + // The following function is used in determining the maximal velocity + // in order to compute the Courant number. + // + template + double NavierStokesProjection::get_maximal_velocity() { + VectorTools::integrate_difference(dof_handler_velocity, u_n, ZeroFunction(dim), + Linfty_error_per_cell_vel, quadrature_velocity, VectorTools::Linfty_norm); + const double res = VectorTools::compute_global_error(triangulation, Linfty_error_per_cell_vel, VectorTools::Linfty_norm); + + return res; + } + + + // The following function is used in determining the maximal nodal difference + // in order to see if we have reched steady-state. We simply use integrate_difference testing + // u_n - u_n_minus_1 against the zero function. + // + template + double NavierStokesProjection::get_maximal_difference() { + u_tmp = u_n; + u_tmp -= u_n_minus_1; + + VectorTools::integrate_difference(dof_handler_velocity, u_tmp, ZeroFunction(dim), + Linfty_error_per_cell_vel, quadrature_velocity, VectorTools::Linfty_norm); + const double res = VectorTools::compute_global_error(triangulation, Linfty_error_per_cell_vel, VectorTools::Linfty_norm); + pcout << "Maximum nodal difference = " << res < + void NavierStokesProjection::output_results(const unsigned int step) { + TimerOutput::Scope t(time_table, "Output results"); + + DataOut data_out; + + std::vector velocity_names(dim, "v"); + std::vector + component_interpretation_velocity(dim, DataComponentInterpretation::component_is_part_of_vector); + u_n.update_ghost_values(); + data_out.add_data_vector(dof_handler_velocity, u_n, velocity_names, component_interpretation_velocity); + pres_n.update_ghost_values(); + data_out.add_data_vector(dof_handler_pressure, pres_n, "p", {DataComponentInterpretation::component_is_scalar}); + + std::vector velocity_names_old(dim, "v_old"); + u_n_minus_1.update_ghost_values(); + data_out.add_data_vector(dof_handler_velocity, u_n_minus_1, velocity_names_old, component_interpretation_velocity); + + /*--- Here we rely on the postprocessor we have built ---*/ + PostprocessorVorticity postprocessor; + data_out.add_data_vector(dof_handler_velocity, u_n, postprocessor); + + data_out.build_patches(MappingQ1(), 1, DataOut::curved_inner_cells); + + const std::string output = "./" + saving_dir + "/solution-" + Utilities::int_to_string(step, 5) + ".vtu"; + data_out.write_vtu_in_parallel(output, MPI_COMM_WORLD); + } + + + // @sect{NavierStokesProjection::compute_lift_and_drag} + + // This routine computes the lift and the drag forces in a non-dimensional framework + // (so basically for the classical coefficients, it is necessary to multiply by a factor 2). + // + template + void NavierStokesProjection::compute_lift_and_drag() { + QGauss face_quadrature_formula(EquationData::degree_p + 2); + const int n_q_points = face_quadrature_formula.size(); + + std::vector pressure_values(n_q_points); + std::vector>> velocity_gradients(n_q_points, std::vector>(dim)); + + Tensor<1, dim> normal_vector; + Tensor<2, dim> fluid_stress; + Tensor<2, dim> fluid_pressure; + Tensor<1, dim> forces; + + /*--- We need to compute the integral over the cylinder boundary, so we need to use 'FEFaceValues' instances. + For the velocity we need the gradients, for the pressure the values. ---*/ + FEFaceValues fe_face_values_velocity(fe_velocity, face_quadrature_formula, + update_quadrature_points | update_gradients | + update_JxW_values | update_normal_vectors); + FEFaceValues fe_face_values_pressure(fe_pressure, face_quadrature_formula, update_values); + + double local_drag = 0.0; + double local_lift = 0.0; + + /*--- We need to perform a unique loop because the whole stress tensor takes into account contributions of + velocity and pressure obviously. However, the two dof_handlers are different, so we neede to create an ad-hoc + iterator for the pressure that we update manually. It is guaranteed that the cells are visited in the same order + (see the documentation) ---*/ + auto tmp_cell = dof_handler_pressure.begin_active(); + for(const auto& cell : dof_handler_velocity.active_cell_iterators()) { + if(cell->is_locally_owned()) { + for(int face = 0; face < GeometryInfo::faces_per_cell; ++face) { + if(cell->face(face)->at_boundary() && cell->face(face)->boundary_id() == 4) { + fe_face_values_velocity.reinit(cell, face); + fe_face_values_pressure.reinit(tmp_cell, face); + + fe_face_values_velocity.get_function_gradients(u_n, velocity_gradients); /*--- velocity gradients ---*/ + fe_face_values_pressure.get_function_values(pres_n, pressure_values); /*--- pressure values ---*/ + + for(int q = 0; q < n_q_points; q++) { + normal_vector = -fe_face_values_velocity.normal_vector(q); + + for(unsigned int d = 0; d < dim; ++ d) { + fluid_pressure[d][d] = pressure_values[q]; + for(unsigned int k = 0; k < dim; ++k) + fluid_stress[d][k] = 1.0/Re*velocity_gradients[q][d][k]; + } + fluid_stress = fluid_stress - fluid_pressure; + + forces = fluid_stress*normal_vector*fe_face_values_velocity.JxW(q); + + local_drag += forces[0]; + local_lift += forces[1]; + } + } + } + } + ++tmp_cell; + } + + /*--- At the end, each processor has computed the contribution to the boundary cells it owns and, therefore, + we need to sum up all the contributions. ---*/ + double lift = Utilities::MPI::sum(local_lift, MPI_COMM_WORLD); + double drag = Utilities::MPI::sum(local_drag, MPI_COMM_WORLD); + if(Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0) { + output_lift << lift << std::endl; + output_drag << drag << std::endl; + } + } + + + // @sect{ NavierStokesProjection::refine_mesh} + + // After finding a good initial guess on the coarse mesh, we hope to + // decrease the error through refining the mesh. We also need to transfer the current solution to the + // next mesh using the SolutionTransfer class. + // + template + void NavierStokesProjection::refine_mesh() { + TimerOutput::Scope t(time_table, "Refine mesh"); + + /*--- We first create a proper vector for computing estimator ---*/ + IndexSet locally_relevant_dofs; + DoFTools::extract_locally_relevant_dofs(dof_handler_velocity, locally_relevant_dofs); + LinearAlgebra::distributed::Vector tmp_velocity; + tmp_velocity.reinit(dof_handler_velocity.locally_owned_dofs(), locally_relevant_dofs, MPI_COMM_WORLD); + tmp_velocity = u_n; + tmp_velocity.update_ghost_values(); + + using Iterator = typename DoFHandler::active_cell_iterator; + Vector estimated_error_per_cell(triangulation.n_active_cells()); + + /*--- This is basically the indicator per cell computation (see step-50). Since it is not so complciated + we implement it through a lambda expression ---*/ + auto cell_worker = [&](const Iterator& cell, + ScratchData& scratch_data, + CopyData& copy_data) { + FEValues& fe_values = scratch_data.fe_values; /*--- Here we finally use the 'FEValues' inside ScratchData ---*/ + fe_values.reinit(cell); + + /*--- Compute the gradients for all quadrature points ---*/ + std::vector>> gradients(fe_values.n_quadrature_points, std::vector>(dim)); + fe_values.get_function_gradients(tmp_velocity, gradients); + copy_data.cell_index = cell->active_cell_index(); + double vorticity_norm_square = 0.0; + /*--- Loop over quadrature points and evaluate the integral multiplying the vorticty + by the weights and the determinant of the Jacobian (which are included in 'JxW') ---*/ + for(unsigned k = 0; k < fe_values.n_quadrature_points; ++k) { + const double vorticity = gradients[k][1][0] - gradients[k][0][1]; + vorticity_norm_square += vorticity*vorticity*fe_values.JxW(k); + } + copy_data.value = cell->diameter()*cell->diameter()*vorticity_norm_square; + }; + + const UpdateFlags cell_flags = update_gradients | update_quadrature_points | update_JxW_values; + + auto copier = [&](const CopyData ©_data) { + if(copy_data.cell_index != numbers::invalid_unsigned_int) + estimated_error_per_cell[copy_data.cell_index] += copy_data.value; + }; + + /*--- Now everything is 'automagically' handled by 'mesh_loop' ---*/ + ScratchData scratch_data(fe_velocity, EquationData::degree_p + 2, cell_flags); + CopyData copy_data; + MeshWorker::mesh_loop(dof_handler_velocity.begin_active(), + dof_handler_velocity.end(), + cell_worker, + copier, + scratch_data, + copy_data, + MeshWorker::assemble_own_cells); + + /*--- Refine grid. In case the refinement level is above a certain value (or the coarsening level is below) + we clear the flags. ---*/ + parallel::distributed::GridRefinement::refine_and_coarsen_fixed_number(triangulation, estimated_error_per_cell, 0.01, 0.3); + for(const auto& cell: triangulation.active_cell_iterators()) { + if(cell->refine_flag_set() && cell->level() == max_loc_refinements) + cell->clear_refine_flag(); + if(cell->coarsen_flag_set() && cell->level() == min_loc_refinements) + cell->clear_coarsen_flag(); + } + triangulation.prepare_coarsening_and_refinement(); + + /*--- Now we prepare the object for transfering, basically saving the old quantities using SolutionTransfer. + Since the 'prepare_for_coarsening_and_refinement' method can be called only once, but we have two vectors + for dof_handler_velocity, we need to put them in an auxiliary vector. ---*/ + std::vector*> velocities; + velocities.push_back(&u_n); + velocities.push_back(&u_n_minus_1); + parallel::distributed::SolutionTransfer> + solution_transfer_velocity(dof_handler_velocity); + solution_transfer_velocity.prepare_for_coarsening_and_refinement(velocities); + parallel::distributed::SolutionTransfer> + solution_transfer_pressure(dof_handler_pressure); + solution_transfer_pressure.prepare_for_coarsening_and_refinement(pres_n); + + triangulation.execute_coarsening_and_refinement(); /*--- Effectively perform the remeshing ---*/ + + /*--- First DoFHandler objects are set up within the new grid ----*/ + setup_dofs(); + + /*--- Interpolate current solutions to new mesh. This is done using auxliary vectors just for safety, + but the new u_n or pres_n could be used. Again, the only point is that the function 'interpolate' + can be called once and so the vectors related to 'dof_handler_velocity' have to collected in an auxiliary vector. ---*/ + LinearAlgebra::distributed::Vector transfer_velocity, + transfer_velocity_minus_1, + transfer_pressure; + transfer_velocity.reinit(u_n); + transfer_velocity.zero_out_ghosts(); + transfer_velocity_minus_1.reinit(u_n_minus_1); + transfer_velocity_minus_1.zero_out_ghosts(); + transfer_pressure.reinit(pres_n); + transfer_pressure.zero_out_ghosts(); + + std::vector*> transfer_velocities; + transfer_velocities.push_back(&transfer_velocity); + transfer_velocities.push_back(&transfer_velocity_minus_1); + solution_transfer_velocity.interpolate(transfer_velocities); + transfer_velocity.update_ghost_values(); + transfer_velocity_minus_1.update_ghost_values(); + solution_transfer_pressure.interpolate(transfer_pressure); + transfer_pressure.update_ghost_values(); + + u_n = transfer_velocity; + u_n_minus_1 = transfer_velocity_minus_1; + pres_n = transfer_pressure; + } + + + // Interpolate the locally refined solution to a mesh with maximal resolution + // and transfer velocity and pressure. + // + template + void NavierStokesProjection::interpolate_max_res(const unsigned int level) { + parallel::distributed::SolutionTransfer> + solution_transfer_velocity(dof_handler_velocity); + std::vector*> velocities; + velocities.push_back(&u_n); + velocities.push_back(&u_n_minus_1); + solution_transfer_velocity.prepare_for_coarsening_and_refinement(velocities); + + parallel::distributed::SolutionTransfer> + solution_transfer_pressure(dof_handler_pressure); + solution_transfer_pressure.prepare_for_coarsening_and_refinement(pres_n); + + for(const auto& cell: triangulation.active_cell_iterators_on_level(level)) { + if(cell->is_locally_owned()) + cell->set_refine_flag(); + } + triangulation.execute_coarsening_and_refinement(); + + setup_dofs(); + + LinearAlgebra::distributed::Vector transfer_velocity, transfer_velocity_minus_1, + transfer_pressure; + + transfer_velocity.reinit(u_n); + transfer_velocity.zero_out_ghosts(); + transfer_velocity_minus_1.reinit(u_n_minus_1); + transfer_velocity_minus_1.zero_out_ghosts(); + + transfer_pressure.reinit(pres_n); + transfer_pressure.zero_out_ghosts(); + + std::vector*> transfer_velocities; + + transfer_velocities.push_back(&transfer_velocity); + transfer_velocities.push_back(&transfer_velocity_minus_1); + solution_transfer_velocity.interpolate(transfer_velocities); + transfer_velocity.update_ghost_values(); + transfer_velocity_minus_1.update_ghost_values(); + + solution_transfer_pressure.interpolate(transfer_pressure); + transfer_pressure.update_ghost_values(); + + u_n = transfer_velocity; + u_n_minus_1 = transfer_velocity_minus_1; + pres_n = transfer_pressure; + } + + + // Save maximum resolution to a mesh adapted. + // + template + void NavierStokesProjection::save_max_res() { + parallel::distributed::Triangulation triangulation_tmp(MPI_COMM_WORLD); + GridGenerator::plate_with_a_hole(triangulation_tmp, 0.5, 1.0, 1.0, 1.1, 1.0, 19.0, Point<2>(2.0, 2.0), 0, 1, 1.0, 2, true); + triangulation_tmp.refine_global(triangulation.n_global_levels() - 1); + + DoFHandler dof_handler_velocity_tmp(triangulation_tmp); + DoFHandler dof_handler_pressure_tmp(triangulation_tmp); + dof_handler_velocity_tmp.distribute_dofs(fe_velocity); + dof_handler_pressure_tmp.distribute_dofs(fe_pressure); + + LinearAlgebra::distributed::Vector u_n_tmp, + pres_n_tmp; + u_n_tmp.reinit(dof_handler_velocity_tmp.n_dofs()); + pres_n_tmp.reinit(dof_handler_pressure_tmp.n_dofs()); + + DataOut data_out; + std::vector velocity_names(dim, "v"); + std::vector + component_interpretation_velocity(dim, DataComponentInterpretation::component_is_part_of_vector); + VectorTools::interpolate_to_different_mesh(dof_handler_velocity, u_n, dof_handler_velocity_tmp, u_n_tmp); + u_n_tmp.update_ghost_values(); + data_out.add_data_vector(dof_handler_velocity_tmp, u_n_tmp, velocity_names, component_interpretation_velocity); + VectorTools::interpolate_to_different_mesh(dof_handler_pressure, pres_n, dof_handler_pressure_tmp, pres_n_tmp); + pres_n_tmp.update_ghost_values(); + data_out.add_data_vector(dof_handler_pressure_tmp, pres_n_tmp, "p", {DataComponentInterpretation::component_is_scalar}); + PostprocessorVorticity postprocessor; + data_out.add_data_vector(dof_handler_velocity_tmp, u_n_tmp, postprocessor); + + data_out.build_patches(MappingQ1(), 1, DataOut::curved_inner_cells); + const std::string output = "./" + saving_dir + "/solution_max_res_end.vtu"; + data_out.write_vtu_in_parallel(output, MPI_COMM_WORLD); + } + + + // @sect{ NavierStokesProjection::run } + + // This is the time marching function, which starting at t_0 + // advances in time using the projection method with time step dt + // until T. + // + // Its second parameter, verbose indicates whether the function + // should output information what it is doing at any given moment: + // we use the ConditionalOStream class to do that for us. + // + template + void NavierStokesProjection::run(const bool verbose, const unsigned int output_interval) { + ConditionalOStream verbose_cout(std::cout, verbose && Utilities::MPI::this_mpi_process(MPI_COMM_WORLD) == 0); + + output_results(1); + double time = t_0 + dt; + unsigned int n = 1; + while(std::abs(T - time) > 1e-10) { + time += dt; + n++; + pcout << "Step = " << n << " Time = " << time << std::endl; + + /*--- First stage of TR-BDF2 and we start by setting the proper flag ---*/ + TR_BDF2_stage = 1; + navier_stokes_matrix.set_TR_BDF2_stage(TR_BDF2_stage); + for(unsigned int level = 0; level < triangulation.n_global_levels(); ++level) + mg_matrices[level].set_TR_BDF2_stage(TR_BDF2_stage); + + verbose_cout << " Interpolating the velocity stage 1" << std::endl; + interpolate_velocity(); + + verbose_cout << " Diffusion Step stage 1 " << std::endl; + diffusion_step(); + + verbose_cout << " Projection Step stage 1" << std::endl; + project_grad(1); + u_tmp.equ(gamma*dt, u_tmp); + u_star += u_tmp; /*--- In the rhs of the projection step we need u_star + gamma*dt*grad(pres_n) and we save it into u_star ---*/ + projection_step(); + + verbose_cout << " Updating the Velocity stage 1" << std::endl; + u_n_gamma.equ(1.0, u_star); + project_grad(2); + grad_pres_int.equ(1.0, u_tmp); /*--- We save grad(pres_int), because we will need it soon ---*/ + u_tmp.equ(-gamma*dt, u_tmp); + u_n_gamma += u_tmp; /*--- u_n_gamma = u_star - gamma*dt*grad(pres_int) ---*/ + u_n_minus_1 = u_n; + + /*--- Second stage of TR-BDF2 ---*/ + TR_BDF2_stage = 2; + for(unsigned int level = 0; level < triangulation.n_global_levels(); ++level) + mg_matrices[level].set_TR_BDF2_stage(TR_BDF2_stage); + navier_stokes_matrix.set_TR_BDF2_stage(TR_BDF2_stage); + + verbose_cout << " Interpolating the velocity stage 2" << std::endl; + interpolate_velocity(); + + verbose_cout << " Diffusion Step stage 2 " << std::endl; + diffusion_step(); + + verbose_cout << " Projection Step stage 2" << std::endl; + u_tmp.equ((1.0 - gamma)*dt, grad_pres_int); + u_star += u_tmp; /*--- In the rhs of the projection step we need u_star + (1 - gamma)*dt*grad(pres_int) ---*/ + projection_step(); + + verbose_cout << " Updating the Velocity stage 2" << std::endl; + u_n.equ(1.0, u_star); + project_grad(1); + u_tmp.equ((gamma - 1.0)*dt, u_tmp); + u_n += u_tmp; /*--- u_n = u_star - (1 - gamma)*dt*grad(pres_n) ---*/ + + const double max_vel = get_maximal_velocity(); + pcout<< "Maximal velocity = " << max_vel << std::endl; + /*--- The Courant number is computed taking into account the polynomial degree for the velocity ---*/ + pcout << "CFL = " << dt*max_vel*(EquationData::degree_p + 1)* + std::sqrt(dim)/GridTools::minimal_cell_diameter(triangulation) << std::endl; + compute_lift_and_drag(); + if(n % output_interval == 0) { + verbose_cout << "Plotting Solution final" << std::endl; + output_results(n); + } + /*--- In case dt is not a multiple of T, we reduce dt in order to end up at T ---*/ + if(T - time < dt && T - time > 1e-10) { + dt = T - time; + navier_stokes_matrix.set_dt(dt); + for(unsigned int level = 0; level < triangulation.n_global_levels(); ++level) + mg_matrices[level].set_dt(dt); + } + /*--- Perform the refinement if desired ---*/ + if(refinement_iterations > 0 && n % refinement_iterations == 0) { + verbose_cout << "Refining mesh" << std::endl; + refine_mesh(); + } + } + if(n % output_interval != 0) { + verbose_cout << "Plotting Solution final" << std::endl; + output_results(n); + } + if(refinement_iterations > 0) { + for(unsigned int lev = 0; lev < triangulation.n_global_levels() - 1; ++ lev) + interpolate_max_res(lev); + save_max_res(); + } + } + +} // namespace NS_TRBDF2 + + +// @sect{ The main function } + +// The main function looks very much like in all the other tutorial programs. We first initialize MPI, +// we initialize the class 'NavierStokesProjection' with the dimension as template parameter and then +// let the method 'run' do the job. +// +int main(int argc, char *argv[]) { + try { + using namespace NS_TRBDF2; + + RunTimeParameters::Data_Storage data; + data.read_data("parameter-file.prm"); + + Utilities::MPI::MPI_InitFinalize mpi_init(argc, argv, -1); + + const auto& curr_rank = Utilities::MPI::this_mpi_process(MPI_COMM_WORLD); + deallog.depth_console(data.verbose && curr_rank == 0 ? 2 : 0); + + NavierStokesProjection<2> test(data); + test.run(data.verbose, data.output_interval); + + if(curr_rank == 0) + std::cout << "----------------------------------------------------" + << std::endl + << "Apparently everything went fine!" << std::endl + << "Don't forget to brush your teeth :-)" << std::endl + << std::endl; + + return 0; + } + catch(std::exception &exc) { + std::cerr << std::endl + << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Exception on processing: " << std::endl + << exc.what() << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } + catch(...) { + std::cerr << std::endl + << std::endl + << "----------------------------------------------------" + << std::endl; + std::cerr << "Unknown exception!" << std::endl + << "Aborting!" << std::endl + << "----------------------------------------------------" + << std::endl; + return 1; + } + +} diff --git a/NavierStokes_TRBDF2_DG/parameter-file.prm b/NavierStokes_TRBDF2_DG/parameter-file.prm new file mode 100644 index 0000000..f41c5c2 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/parameter-file.prm @@ -0,0 +1,39 @@ +subsection Physical data + # In this subsection we declare the physical data + # The initial and final time, and the Reynolds number + set initial_time = 0.0 + set final_time = 400.0 + set Reynolds = 100.0 +end + +subsection Time step data + # In this subsection we declare the data that is to be used for time discretization, + # i.e. the time step dt + set dt = 5.0e-3 +end + +subsection Space discretization + # In this subsection we declare the data that is relevant to the space discretization + # we set the number of global refines the triangulation must have + # and the degree k of the pair Q_(k+1)--Q_k of velocity--pressure finite element spaces + set n_of_refines = 4 + set max_loc_refinements = 3 + set min_loc_refinements = 1 +end + +subsection Data solve + # In this section we declare the parameters that are going to control the solution process + # for the velocity. + set max_iterations = 10000 # maximal number of iterations that linear solvers must make + set eps = 1e-8 # stopping criterion +end + +set saving directory = SimTest + +set refinement_iterations = 0 + +#The output frequency +set output_interval = 500 + +#Finally we set the verbosity level +set verbose = true diff --git a/NavierStokes_TRBDF2_DG/runtime_parameters.h b/NavierStokes_TRBDF2_DG/runtime_parameters.h new file mode 100644 index 0000000..acbe846 --- /dev/null +++ b/NavierStokes_TRBDF2_DG/runtime_parameters.h @@ -0,0 +1,182 @@ +// We start by including all the necessary deal.II header files +// +#include + +// @sect{Run time parameters} +// +// Since our method has several parameters that can be fine-tuned we put them +// into an external file, so that they can be determined at run-time. +// +namespace RunTimeParameters { + using namespace dealii; + + class Data_Storage { + public: + Data_Storage(); + + void read_data(const std::string& filename); + + double initial_time; + double final_time; + + double Reynolds; + double dt; + + unsigned int n_refines; /*--- Number of refinements ---*/ + unsigned int max_loc_refinements; /*--- Number of maximum local refinements allowed ---*/ + unsigned int min_loc_refinements; /*--- Number of minimum local refinements allowed + once reached that level ---*/ + + /*--- Parameters related to the linear solver ---*/ + unsigned int max_iterations; + double eps; + + bool verbose; + unsigned int output_interval; + + std::string dir; /*--- Auxiliary string variable for output storage ---*/ + + unsigned int refinement_iterations; /*--- Auxiliary variable about how many steps perform remeshing ---*/ + + protected: + ParameterHandler prm; + }; + + // In the constructor of this class we declare all the parameters in suitable (but arbitrary) subsections. + // + Data_Storage::Data_Storage(): initial_time(0.0), + final_time(1.0), + Reynolds(1.0), + dt(5e-4), + n_refines(0), + max_loc_refinements(0), + min_loc_refinements(0), + max_iterations(1000), + eps(1e-12), + verbose(true), + output_interval(15), + refinement_iterations(0) { + prm.enter_subsection("Physical data"); + { + prm.declare_entry("initial_time", + "0.0", + Patterns::Double(0.0), + " The initial time of the simulation. "); + prm.declare_entry("final_time", + "1.0", + Patterns::Double(0.0), + " The final time of the simulation. "); + prm.declare_entry("Reynolds", + "1.0", + Patterns::Double(0.0), + " The Reynolds number. "); + } + prm.leave_subsection(); + + prm.enter_subsection("Time step data"); + { + prm.declare_entry("dt", + "5e-4", + Patterns::Double(0.0), + " The time step size. "); + } + prm.leave_subsection(); + + prm.enter_subsection("Space discretization"); + { + prm.declare_entry("n_of_refines", + "100", + Patterns::Integer(0, 1500), + " The number of cells we want on each direction of the mesh. "); + prm.declare_entry("max_loc_refinements", + "4", + Patterns::Integer(0, 10), + " The number of maximum local refinements. "); + prm.declare_entry("min_loc_refinements", + "2", + Patterns::Integer(0, 10), + " The number of minimum local refinements. "); + } + prm.leave_subsection(); + + prm.enter_subsection("Data solve"); + { + prm.declare_entry("max_iterations", + "1000", + Patterns::Integer(1, 30000), + " The maximal number of iterations linear solvers must make. "); + prm.declare_entry("eps", + "1e-12", + Patterns::Double(0.0), + " The stopping criterion. "); + } + prm.leave_subsection(); + + prm.declare_entry("refinement_iterations", + "0", + Patterns::Integer(0), + " This number indicates how often we need to " + "refine the mesh"); + + prm.declare_entry("saving directory", "SimTest"); + + prm.declare_entry("verbose", + "true", + Patterns::Bool(), + " This indicates whether the output of the solution " + "process should be verbose. "); + + prm.declare_entry("output_interval", + "1", + Patterns::Integer(1), + " This indicates between how many time steps we print " + "the solution. "); + } + + // We need now a routine to read all declared parameters in the constructor + // + void Data_Storage::read_data(const std::string& filename) { + std::ifstream file(filename); + AssertThrow(file, ExcFileNotOpen(filename)); + + prm.parse_input(file); + + prm.enter_subsection("Physical data"); + { + initial_time = prm.get_double("initial_time"); + final_time = prm.get_double("final_time"); + Reynolds = prm.get_double("Reynolds"); + } + prm.leave_subsection(); + + prm.enter_subsection("Time step data"); + { + dt = prm.get_double("dt"); + } + prm.leave_subsection(); + + prm.enter_subsection("Space discretization"); + { + n_refines = prm.get_integer("n_of_refines"); + max_loc_refinements = prm.get_integer("max_loc_refinements"); + min_loc_refinements = prm.get_integer("min_loc_refinements"); + } + prm.leave_subsection(); + + prm.enter_subsection("Data solve"); + { + max_iterations = prm.get_integer("max_iterations"); + eps = prm.get_double("eps"); + } + prm.leave_subsection(); + + dir = prm.get("saving directory"); + + refinement_iterations = prm.get_integer("refinement_iterations"); + + verbose = prm.get_bool("verbose"); + + output_interval = prm.get_integer("output_interval"); + } + +} // namespace RunTimeParameters